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A-Net: An A-Shape Lightweight Neural Network
for Real-Time Surface Defect Segmentation
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Zhenrong Wang , and Bin Li

Abstract— Surface defect segmentation is a critical task in
industrial quality control. Existing neural network architectures
often face challenges in providing both real-time performance
and high accuracy, limiting their practical applicability in time-
sensitive, resource-constrained industrial setting. To bridge this
gap, we introduce A-Net, an A-shape lightweight neural network
specifically designed for real-time surface defect segmentation.
Initially, A-Net introduces a pioneering A-shaped architecture
tailored to efficiently handle both low-level details and high-
level semantic information. Secondly, a series of lightweight
feature extraction blocks are designed, explicitly engineered to
meet the stringent demands of industrial defect segmentation.
Finally, rigorous evaluations across multiple industry-standard
benchmarks demonstrate A-Net’s exceptional efficiency and high
performance. Compared to the well-estabilished U-Net, A-Net
achieves comparable or superior intersection over union (IoU)
scores with gains of −0.21%, −0.3%, +4.7%, and +5.94% on
NEU-seg, DAGM-seg, MCSD-seg, and MT dataset, respectively.
Remarkably, A-Net does so with only 0.39M parameters, a 98.8%
reduction, and 0.44G floating point operations (FLOPs), a 99%
decrease in computational load. Besides, A-Net shows extremely
fast inference speed on edge device without GPU because of its
low FLOPs. A-Net contributes to the development of effective and
efficient defect segmentation networks, suitable for real-world
industrial applications with limited resources.

Index Terms— Lightweight neural network, neural network
architecture, real-time neural network, surface defect detection.

NOMENCLATURE
Symbol Quantity
ParamsConv Parameter number of general

convolution.
FLOPsConv FLOPs of general convolution.
ParamsdwConv Parameter number of DW-Conv.
FLOPsdwConv FLOPs of DW-Conv.
Ci Number of input channels for

convolution.
Co Number of output channels for

convolution.
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Kh Convolution kernel height.
Kw Convolution kernel width.
Fh Feature map height.
Fw Feature map width.
TP Positive predictions that match with the

ground truth.
FP Positive predictions that do not match with

ground truth.
opr Different operations in every stage.
Sn nth stage in A-Net.
Cin Number of input channels for different stage.
Cm Number of intermediate channels in different stage.
Cout Number of output channels in different

stage.
LFEM Different lightweight feature extraction modules.
Lweight Loss function in training stage.
Ldice Dice loss function.
Lbce Binary cross-entropy loss function.
pd Predicted pixel of models.
gd Pixel of ground truth.
FN Negative predictions that do not match with

ground truth.

I. INTRODUCTION

IN RECENT years, the field of defect segmentation has
gained significant prominence as a crucial aspect of indus-

trial surface defect detection. The objective is to precisely
locate and size defects for effective quality control [1], [2].
Advances in semantic segmentation architectures, such as fully
convolutional networks (FCN) [3], SegNet [4], U-Net [5], and
PGA-Net [6], have improved performance metrics. Concur-
rently, there is a growing requirement for efficient algorithms
capable of low-latency edge deployment in computationally
constrained environments. This has led to a rising interest
in the development of defect segmentation networks that
optimize the trade-off between computational efficiency and
effectiveness.

Recently, numerous researchers have proposed the design of
low-latency, high-efficiency CNN models that maintain satis-
factory segmentation accuracy. We will discuss segmentation
network design from two perspectives: the architectures and
the lightweight approaches.

Regarding the architectures, there are three preva-
lent approaches: 1) encoder–decoder architectures excel at
pixel-wise prediction through comprehensive feature extrac-
tion, but may lack nuanced context understanding (e.g., FCN
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Fig. 1. Comparisons between classical and lightweight semantic segmenta-
tion networks and the A-Net on NEU-inclusion dataset.

[3], SegNet [4], U-Net [5], and PGA-Net [6]); 2) pyramid
pooling architectures mitigate this by integrating multiscale
features, albeit at the cost of increased computational com-
plexity (e.g., PSPNet [7], DeepLab [8]); and 3) bilateral
architectures provide a balanced approach by adopting a mul-
tipath framework to combine low-level details with high-level
semantics (e.g., BiSegNet [9], BiSegNet V2 [10], STDC-MA
network (STDC) [11]).

In the pursuit of lightweight approaches, several key tech-
niques warrant thorough investigation: 1) input restriction and
channel pruning serve as direct methods for reducing compu-
tational load, albeit with trade-offs in representation capacity
(e.g., ENet [12], ICNet [13]); 2) weight quantization and
knowledge distillation emerge as sophisticated techniques to
compact the model further, targeting both the storage and com-
putational facets (e.g., [14], [15]); and 3) the well-designed
convolution blocks, such as depthwise separable convolutions,
provide architectural innovations that strike a balance between
efficiency and performance (e.g., ERFNet [16], ENet [12]).

Moreover, we analyze the challenges of designing a
lightweight model for surface defect segmentation: 1) limited
defect image availability hinders lightweight models, which
are inherently limited in their feature extraction capabilities;
2) defects’ varied sizes and irregular shapes have been tackled
by prior methods using large-scale or dilated convolutions and
pyramid structures, but these add computational complexity;
and 3) the subtle differences between defective and normal
areas complicate segmentation. While multiple skip connec-
tions and auxiliary training branches can improve accuracy,
they increase memory overhead.

To overcome the aforementioned challenges, we extended
bilateral architectures and well-designed convolution blocks
to propose a lightweight network called A-Net, which demon-
strates strong performance on various surface defect datasets,
while maintaining exceptional lightness. Fig. 1 shows the
comparisons between classical and lightweight semantic seg-
mentation networks and the A-Net in terms of intersection
over union (IoU) performance, model FLOPs, and parameters
on NEU-inclusion dataset. Due to the large difference in the
number of parameters between the lightweight segmentation

network and the universal segmentation network, we enlarge
the circle representing A-Net and ENet by a factor of 15;
ESNet, ERFNet, and topformer by a factor of 6; and BiSeNet
and STDC by a factor of 1.5 to make the picture more
beautiful. It is obvious that the proposed A-Net is superior
than all models shown in this figure, while using much fewer
FLOPs and parameters.

Initially, we proposed an A-shaped structure, depicted in
Fig. 2(d). A-Net retains the encoder–decoder structure and
incorporates the concept of bilateral architectures to extract
both low-level detailed information and high-level semantic
information. Rather than adding additional branches, it is
designed with different feature extraction layers within the
same path: shallow layers capture detailed information, while
deeper layers focus on semantic content. These features are
fused through a single skip connection, giving the architecture
an ‘A’-like shape. As a result, A-Net not only preserves the
multiscale feature extraction and fusion characteristics but also
minimizes memory usage typically incurred by multiple skip
connections.

Subsequently, we designed a series of lightweight convo-
lution blocks comprising: 1) feature extraction blocks, which
include a Light Block and a Wide Block corresponding to 3
× 3 and 5 × 5 receptive fields, respectively; 2) up- and down-
sampling blocks, composed of 2 × 2 convolutional layers with
a stride of 2 and deconvolutional layers, respectively; and
3) concatenation blocks. Within these blocks, we employed
depthwise convolution, dropout layers, and residual connec-
tion structures to prevent overfitting, gradient vanishing, and
gradient explosion issues, thus creating a lightweight network
model adaptable to small datasets.

In summary, our main contributions are as follows.

1) We propose a novel network architecture, dubbed A-
Net, which extracts information at different levels in
stages during the down-sampling stage and facilitates
the aggregation of information at various levels through
one skip connection in the up-sampling stage.

2) A series lightweight convolution blocks are designed for
A-Net. These blocks enhance the receptive field, capture
rich contextual information, and prevent severe over-
fitting on small datasets effectively while minimizing
computational costs.

3) A-Net achieves remarkable results on different datasets
(NEU-seg, DAGM-seg, MCSD-seg, MT dataset). More
specifically, it demonstrates competitive performance
against classic large models such as U-Net (with 31.39M
parameters and 42.75G FLOPs), requiring only 0.39M
parameters and 0.44G FLOPs.

In order to better showcase our work, we have organized
the symbols appearing in the paper and provided the corre-
sponding meanings of every symbol in nomenclature, where
the DW-Conv represents the depthwise separable convolution.
Besides, the code of the work shown in the article is available
on GitHub: https://github.com/Max-Chenb/A-Net.
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Fig. 2. Three popular semantic segmentation network architectures (a)–(c) and the novel architecture proposed in this article (d). (a) Encoder–decoder
backbone. (b) Pyramid pooling backbone. (c) Bilateral segmentation backbone. (d) A-shaped lightweight backbone.

II. RELATED WORK

In recent years, notable progress has been made in the realm
of industrial surface defect segmentation. This section centers
its examination on three primary categories of methodolo-
gies that are particularly germane to our work, specifically
generic semantic segmentation, lightweight architectures and
real-time semantic segmentation techniques, and industrial
surface defect segmentation.

A. Generic Semantic Segmentation

With the introduction of the FCN [3], methods based on this
framework have continuously pushed the state-of-the-art per-
formance on various benchmarks. Currently, the mainstream
FCN [3] structures are encoder–decoder structures, as depicted
in Fig. 2(a). The down-sampling stage captures information
of different scales in the input image, while the up-sampling
stage recovers the feature map resolution and maps it into
semantic segmentation output. To enhance the performance of
the encoder–decoder structure, most high-performing semantic
segmentation networks employ a horizontal connection struc-
ture. For example, U-Net [5] uses a concatenate operation to
connect feature maps with the same resolution in the encoder
and decoder and then aggregates information in different chan-
nels through convolution operation. SegNet [4] uses a method
to save maximum pooled coordinates to guide up-sampling.
RefineNet [17] performs up-sampling of the encoder’s feature
map using multipath refinement. DFN [18] employs a channel
attention module to merge the backbone network and recover
details.

In addition, DeepLab [8] adopts cavity convolution of
different sizes at the decoder stage to up-sample the feature
map obtained from the encoder stage to the same resolution
and aggregate to fuse feature information of different scales,
as shown in Fig. 2(b). HRNet [19] utilizes multiple branches
to maintain high resolution for higher precision segmentation.

Recently, in order to pursue higher performance, some
researchers have introduced transformer [20] in the field of
natural language processing (NLP) into visual tasks. The
original representative of vision transformer is the ViT model
for image classification proposed by Dosovitskiy et al. [21]

Its basic idea is to divide the image into several patches and
simultaneously input it into the network and convert it into a
sequence for operation, so that the perception field can be
expanded into the whole image. It improves the ability of
the network to extract the overall features of the image, and
finally builds a network model suitable for visual tasks. Swim-
transformer [22] module is proposed on the basis of ViT to
further optimize the attention mechanism. After that, Zheng
et al. [23] proposed the first VIT-based image segmentation
representative model SERT, which realized end-to-end image
segmentation by adding PUP and MLA up-sampling modules.
Cao et al. [24] proposed Swim-Unet for image segmentation
task and replaced the convolutional layer in U-net with swim-
transformer block to further improve the performance.

However, these architectures predominantly rely on oper-
ations with a high number of parameters and computational
overhead. Consequently, the majority of such networks are
characterized by a considerable size and low-inference speed.

B. Lightweight and Real-Time Semantic Segmentation

With the advancement of deep learning, numerous
large-scale network models have been proposed. However, due
to their high parameter count and computational overhead,
it has become challenging to meet the stringent requirements
of real-world applications that demand prompt response times.
Consequently, researchers have recently shifted their focus
toward neural network algorithms that exhibit lightweight and
real-time characteristics. Among these, ENet [12] stands out as
the pioneer work that emphasizes convolutional neural network
efficiency. This network adopts an encoder–decoder structure,
employs maximum pooling coordinates to guide up-sampling,
and achieves an extremely high reasoning speed. Similarly,
ICNet [13] leverages image concatenation strategy to acceler-
ate the network’s reasoning speed. ERFNet [16] incorporates
residual connections and factorized convolutions to ensure
accuracy while improving efficiency. ESNet [25] employs the
decomposition of convolutional units and other lightweight
convolutional operations to construct a symmetrical structure
real-time semantic segmentation network. Finally, DFANet
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[26] utilizes feature repetition to decrease network complexity
while preserving feature expression.

Despite the ability of above-mentioned networks to achieve
a lightweight network structure or real-time inference speed,
the aforementioned lightweight or real-time semantic segmen-
tation networks often entail a trade-off between performance
and segmentation capability of small-scale features. This is due
to their inability to effectively attend to both low-level details
and high-level semantic information simultaneously [10].

To address the aforementioned challenges, BiSeNetV2 [10]
introduces a bilateral segmentation backbone as illustrated
in Fig. 2(c). This architecture incorporates both detailed and
semantic branches during the sampling phase to enable the
simultaneous extraction of corresponding information, which
is subsequently aggregated and directly up-sampled to the
output resolution. Despite BiSeNetV2’s ability to perform
real-time semantic segmentation via GPU-accelerated com-
puting while simultaneously extracting details and semantic
information, the network’s parameter count and computational
requirements remain significant due to the existence of two
subsampling branches. Thus, its deployment on industrial edge
devices without GPU-accelerated computing is not viable.

Besides, topformer [27] up-samples tokens through pyramid
structure, and then integrates tokens of different scales. This
method reduces the number of parameters and computational
complexity in transformer, and improves the inference speed
of the network. However, due to the large amount of data
required for its training, it is not applicable to the field of
industrial defect detection.

To address these limitations, this paper proposes the A-Net
structure illustrated in Fig. 2(d). A-Net employs a specially
designed feature extraction module to realize a lightweight
network structure and real-time reasoning while aggregating
detailed information and semantic information through a single
jump connection.

C. Industrial Surface Defect Segmentation

The segmentation of industrial surface defects based on
neural networks has garnered increasing attention with the
development of deep learning. In recent years, fully convo-
lutional neural network-based methods for industrial surface
defect segmentation have emerged continuously. For example,
Wang et al. [28] proposed an FCN-based method for refining
and segmenting defects in tire images by fusing multiscale
sampling layer feature maps, while Yu et al. [29] developed
a multistage FCN method to achieve more precise defect
segmentation. Moreover, MCuePush U-Net [30] employs a
three-channel image output of MCue module as U-Net’s input
to improve defect segmentation performance, while FL-SegNet
[31] combines the original SegNet network with a focal
loss function to segment multiple defects in tunnel lining.
DeepCrack [32], based on SegNet, fuses multiscale deep con-
volution features learned at hierarchical convolution stages to
capture fine crack structures. Finally, PGA-Net [6] introduces
a pyramid feature aggregation and global context attention
network to achieve better defect segmentation performance.
The aforementioned networks for surface defect segmenta-
tion can effectively achieve precise segmentation of specific

defects. However, their network architectures are large and
require high computational resources, making their deploy-
ment and real-time inference at the edge costly. In contrast,
the A-Net proposed in this study employs a specially designed
network architecture and feature extraction module to achieve
a lightweight network structure and real-time inference while
maintaining sufficient defect segmentation performance.

III. A-SHAPED LIGHTWEIGHT AND REAL-TIME NETWORK

A. Overview

As depicted in Fig. 3, the proposed lightweight real-time
industrial defect segmentation network is of A-shaped archi-
tecture, hence named A-Net. A-Net is comprised of two
distinct parts, namely feature extraction and feature fusion.
During the feature extraction stage, the feature maps with
darker colors correspond to higher levels of information,
while in the feature fusion stage, feature maps with darker
colors correspond to a greater degree of detailed information
recovery. The feature extraction stage is composed of two
stages: detail extraction and semantic extraction. These stages
employ different stacking modes of down-sampling module
(down block) and lightweight feature extraction module (Light
Block and Wide Block). The aim of detail extraction is
to extract low-level detailed information more effectively,
whereas the goal of semantic extraction is to capture high-level
semantic information more precisely. The feature fusion stage
employs alternately stacked up-sampling module (up block)
and lightweight feature extraction module (Light Block and
Wide Block) to achieve refined feature recovery. Further,
we aggregate low-level detailed information with high-level
semantic information through a jump connection structure
specially designed for this purpose. Finally, the segmentation
output is obtained through the process of up-sampling, feature
fusion, and seg head.

B. Motivation

To achieve a lightweight network structure capable of
real-time inferencing on edge devices, it is necessary to mini-
mize the number of parameters and computational complexity
of the network. The computational complexity of the network
is represented by floating point operations (FLOPs).

Industrial defect images present a challenge to semantic
segmentation networks due to the varying sizes and shapes of
defect regions. To address this challenge, we integrate detail
extraction and semantic extraction in the feature extraction
stage and aggregate the extracted information via a jump
connection after up-sampling. This approach enables the net-
work to focus on information of different scales in the image
simultaneously while maintaining a low parameter number and
FLOPs, leading to high-precision semantic segmentation of
industrial surface defects.

When the dataset size is small, deep fully convolutional
neural networks are susceptible to the issues of gradient
disappearance and explosion, which can lead to ineffective
convergence. Therefore, we designed a lightweight feature
extraction convolutional operation with a residual connection
structure to address these issues. Additionally, we adopted
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Fig. 3. Architecture of proposed network in this article. (a) Light Block. (b) Wide Block. (c) Down block. (d) Up block. (e) Cat block.

different convolutional operation block stacking modes in dif-
ferent feature extraction stages to further expand the receptive
field of the semantic extraction stage. As a result, A-Net
achieves effective extraction of low-level details and high-level
semantic information with an extremely low parameter number
and FLOPs.

Furthermore, to improve the performance of industrial sur-
face defect segmentation and to address the issue of indistinct
boundaries between defect and nondefect regions, we have
incorporated a staggered design of up-sampling and convolu-
tion operation blocks in our feature fusion stage. Nevertheless,
this design imposes additional computational overhead. Hence,
we have integrated lightweight feature extraction convolution
operations, namely Light Block and Wide Block, in both
feature extraction and feature fusion stages to mitigate the
computational complexity. This approach strikes a balance
between computational efficiency and segmentation accuracy,
enabling our proposed network to achieve high-precision
industrial surface defect segmentation.

C. Feature Extraction

This section presents a detailed description of the down
block and two lightweight feature extraction blocks (Light and
Wide Block). The feature extraction stage is comprised of two
stages: detail extraction and semantic extraction. For the detail
extraction stage, we utilize the stacking of down block, Light
Block, and Wide Block. On the other hand, to rapidly expand
the receptive field in the semantic extraction stage, we use
the stacking mode of down block, two Light Blocks, and two
Wide Blocks. The various blocks are elaborated below.

1) Down Block: To address the issue of vanishing or
exploding gradients that may arise in deep neural networks,
we incorporate a residual connection architecture within the
down block. As input and output sizes vary, both branches
necessitate sampling during down-sampling. For a lightweight
design, we apply point-wise convolution to condense the
primary channel, followed by a 2 × 2 convolution with a
stride of 2 for down-sampling the feature map, and then
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another point-wise convolution to expand the channel count.
Meanwhile, the residual channel utilizes max-pooling for
down-sampling. To integrate the distinct information from
both branches, we merge their sampled outputs and apply the
PReLU activation function, yielding the final output of the
sampling module. Fig. 3 illustrates the down block structure.
Besides, Table I provides further details of the module setting,
where the opr represents different operations at different
stages; the Input represents input image; the Down and the
Up represent down-sampling module and up-sampling mod-
ule, respectively; the LFEM represents lightweight feature
extraction module (including Light Block, Wide Block, and
cat block); the Cin represents the number of input channels;
the Cm represents the number of intermediate channels; the
Cout represents the number of output channels; and the Output
Size represents the resolution of output feature graph of each
module.

2) Light Block and Wide Block: The feature extraction
module is a vital element of a semantic segmentation neural
network, significantly impacting its training convergence and
dataset performance. However, standard convolution opera-
tions involve substantial computational demands. To maintain
a lightweight structure while enabling the network to extract
features from images with an extensive receptive field, we sub-
stitute traditional convolutions with lightweight convolution
operations, such as depthwise separable convolution, point-
wise convolution, and factorized convolution. This reduction
in network parameters diminishes computational complex-
ity. Although dilated convolution can expand the receptive
field without increasing parameter count and computational
complexity, its inferior computational efficiency results in a
higher inference delay; thus, we exclude it from our network
design.

In pursuit of network lightness, we devise two unique
feature extraction modules with varying receptive field sizes.
The first module, dubbed Light Block, consists of a depthwise
separable convolution between two point-wise convolutions
and employs a residual connection. This module, with a 3
× 3 receptive field, is optimized for computational efficiency.
The second module, termed Wide Block, adopts factorized
convolution (5 × 1 and 1 × 5) instead of the traditional
5 × 5 convolution, enabling a larger 5 × 5 receptive field.
Analogous to the Light Block, the Wide Block is flanked
by two point-wise convolutions and incorporates a residual
connection. Fig. 3 showcases the specific architectures of these
feature extraction modules.

Our proposed feature extraction module exhibits a sym-
metric channel structure, maintaining an equal number of
input and output channels. The initial point-wise convolution
reduces the channel count to 1/4 of the output channels,
followed by depthwise separable convolution or factorized
convolution with an equal number of input and output chan-
nels to expand the receptive field. Subsequently, the latter
point-wise convolution increases the channel count to achieve
the desired output channel dimension. This channel design
effectively mitigates the computational complexity arising
from large convolution kernels. Table I provides more detailed
channel configurations.

Using an input size of 32 × 112 × 112 and an output size of
32 × 112 × 112 as an example, with the intermediate channel
count set to 1/4 of the output channel count, we compute
the parameter quantity and FLOPs of the feature extraction
module and compare them to those of a standard convolution
operation. The specific formulas for calculating the parameter
quantity and FLOPs of common convolution operations are as
follows (bias is not considered):

ParamsConv = Kh × Kw × Ci × Co (1)

FLOPsConv =
2Kh × Kw − 1

g
× Ci × Fh × Fw × Co (2)

where Ci and Co represent the number of input and out-
put channels for the convolution, respectively. Kh and Kw

denote the height and width of the convolution kernel,
while Fh and Fw represent the height and width of the
feature map. k corresponds to the size of the convolu-
tion kernel, and g stands for the number of convolution
groups.

For depthwise separable convolution, it can be considered
as a standard convolution with the number of groups g = Kh ×

Kw, and the number of input and output channels being Ci .
Additionally, it includes the standard 1 × 1 convolution. Thus,
the specific formula for calculating the parameter quantity and
FLOPs is as follows (excluding bias consideration):

ParamsdwConv = Ci × (Kh × Kw) + Ci × Co (3)

FLOPsdwConv = (2Kh × Kw − 1) × Fh × Fw × Co

+ Ci × Fh × Fw × Co. (4)

Upon calculating the above parameters, we observe that
the 3 × 3 standard convolution operation contains 9.22k
parameters and 115.61M FLOPs, while the Light Block only
has 0.75k parameters and 9.93M FLOPs. Similarly, the 5 ×

5 standard convolution operation has 25.6k parameters and
309.76M FLOPs, compared to the Wide Block, which only
has 1.25k parameters and 16.26M FLOPs. Consequently, our
designed feature extraction module significantly reduces the
parameter count and FLOPs while retaining the same receptive
field size as the standard convolution.

Considering feature extraction at multiple scales, our mod-
ule is designed to accommodate receptive fields of 3 × 3 and
5 × 5. By utilizing various stacking configurations of feature
extraction modules during different stages of down-sampling
(detail extraction and semantic extraction), we can effectively
control the receptive field size for each pixel in the feature map
at different stages. This approach enables efficient extraction
of both low-level details and high-level semantics according
to our requirements.

Additionally, we employ several strategies to improve the
performance of our module. In particular, we incorporate the
residual connection approach, embed the dropout layer, and
implement the PReLU (parametric rectified linear unit) func-
tion for activation before combining the input and output of
the feature extraction module. The PReLU activation function
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TABLE I
NUMBER OF CHANNELS IN EACH STAGE OF A-NET

is expressed as follows:

PReLU(xi ) =

{
xi , if xi > 0
ai xi , if xi ≤ 0

(5)

where a is the parameter obtained through training.
The residual connection effectively tackles the issues of

gradient explosion or vanishing gradients that can occur in
deep networks, facilitating efficient convergence of the net-
work on small datasets. Incorporating the dropout layer within
the feature extraction module also helps prevent overfitting
on small datasets. Moreover, the PReLU activation function
introduces increased flexibility to the network without sub-
stantially augmenting the parameter count or computational
overhead, thus further optimizing the performance of the
feature extraction module.

As mentioned earlier, our two lightweight feature extraction
modules are capable of effectively extracting features from
images at different stages of the network using specific com-
binations.

D. Feature Fusion

During the feature fusion stage, we utilize a stacking config-
uration consisting of up blocks, Light Blocks (or cat blocks),
and Wide Blocks in an interleaved manner to accomplish fine
feature recovery and feature fusion. In the final up-sampling
step, we develop a simple seg head to map the up-sampled
features to segmentation output.

1) Up Block: Two prevalent methods for up-sampling are
interpolation up-sampling and deconvolution. To address the
issues of vanishing or exploding gradients in deep networks,
we adopt the residual connection structure in our up block,
as detailed in Section III-C1. This approach involves creating
two branches using deconvolution and bilinear up-sampling
operations, and implementing channel compression through
point-wise convolution before deconvolution. By expanding
the number of channels after deconvolution, a lightweight sam-
pling module is constructed. The outputs of the two branches
are then summed and activated by PReLU. During the up-
sampling process, the number of output channels gradually
decreases, with the number of intermediate channels set at

Fig. 4. Seg head architecture.

1/4 of the output channel count. Table I presents the channel
settings.

Moreover, in the up-sampling process, we merge low-level
details with high-level semantics after up-sampling through
a jump connection at 1/4 size of input, as it is the boundary
between the detail extraction stage and the semantic extraction
stage. First, we concatenate the feature map obtained from
up-sampling high-level semantics with the details extracted
during the detail extraction stage. Subsequently, we utilize
lightweight depthwise separable convolution to compress the
channel count and integrate the spatial information across
different channels. This combined feature map is then input
into the Light Block for further feature fusion and extraction
operations. Fig. 3 illustrates the specific architecture of this
process.

2) Seg Head: In the final up-sampling stage of our network,
we have designed a straightforward segmentation head. This
segmentation head consists of a deconvolution layer, a point-
wise convolution layer, and a 3 × 3 standard convolution layer,
as depicted in Fig. 4. The deconvolution layer is responsible
for up-sampling the feature map, initially half the size of the
input image, while simultaneously reducing the number of
channels. The point-wise convolution layer serves to integrate
spatial information from various channels of the up-sampled
feature map. Lastly, the 3 × 3 standard convolution layer maps
the feature map into the desired segmentation output, thereby
completing the entire network computation process.

E. Loss Function and Training

To further enhance network performance, the loss function
formula used in the training process is as follows:

Lweight(pd , gd) = Ldice(pd , gd) + 0.5 × Lbce(pd , gd) (6)

where pd ∈ RH×W denotes the predicted pixel and gd ∈ RH×W

denotes the corresponding pixel of ground-truth. Additionally,
Lbce represents the binary cross-entropy loss, while Ldice
represents the dice loss, which is given as follows:

Ldice(pd , gd) = 1 −
2

∑H×W
i pi

d gi
d + ε∑H×W

i

(
pi

d

)2
+

∑H×W
i

(
gi

d

)2
+ ε

. (7)

Moreover, we have not employed a complex training method
to train A-Net. Instead, we have utilized a simple gradient
descent method to train A-Net without incorporating any
auxiliary training strategies.

IV. EXPERIMENTS

In this section, we begin by introducing the industrial sur-
face defect dataset, our experimental setup, and the evaluation
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metrics employed. Next, we carry out ablative experiments to
examine the impact of our designed components on network
performance. We then perform a comparative analysis of the
performance and network structure lightness of our proposed
method relative to other state-of-the-art algorithms on different
datasets. Lastly, we assess the computational efficiency of our
proposed lightweight networks on the CPU platform, followed
by a comprehensive analysis and comparison of the results.

A. Datasets, Settings, and Evaluation Metrics

1) Datasets: In this article, we have selected two distinct
surface defect datasets, namely the NEU-DET defect dataset
and the DAGM defect dataset, to substantiate and evaluate the
applicability and generality of our proposed method.

a) NEU-seg dataset: The NEU dataset is a standard
dataset collected by [33] to address the problem of automatic
recognition for hot-rolled steel strips. The dataset includes six
types of strip steel plates, comprising patch, crazing, pitted-
surface, inclusion, scratches, and rolled-in scale, with each
surface defect containing 300 images. The original resolution
of the images in the dataset is 200 × 200, and all have
corresponding defect type labels. We selected three surface
defects (inclusion, patches, and scratches) for pixel-level mark-
ing. We then adjusted their resolution to 224 × 224 and
divided them into training set and test set, containing 250 and
50 images, respectively, to enable their application to our
industrial defect image segmentation.

b) DAGM-seg dataset: The DAGM dataset [34] is manu-
ally generated and contains multiple types of industrial surface
defect images with an original resolution of 512 × 512.
We chose categories 7 through 10, encompassing a total of
4 datasets, and then divided them into training set and test
set, containing 250 and 50 images, respectively.

c) MCSD dataset: The main challenge in the MCSD
dataset is the complex and changing background. The reso-
lution of images in this dataset is 512 × 512, and the training
set and test set contain 886 and 222 images, respectively.

d) MT dataset: The MT dataset mainly verifies the
detection effect of the network for different defects under the
conditions of uneven illumination, complex background, and
large shape differences. The resolution of images is 512 × 512,
and the training set and test set contain 341 and 51 images,
respectively.

2) Setting:
a) Training: To ensure fairness, all models are trained

from scratch. We employ the stochastic gradient descent
(SGD) algorithm with a learning rate of 0.0003 and a momen-
tum of 0.9 to train all models. For the NEU-seg datasets,
we adopt a batch size of 16, while for the DAGM-seg, MCSD,
and MT datasets, we use a batch size of 4. The weight decay
is set at 0.0001. Moreover, we divide 15% of the training set
into validation and train all networks for 2000 epochs during
training stage.

b) Data augmentation: Images are randomly rotated
by 90◦ and randomly flipped during training to expand the
training set and prevent severe overfitting.

c) Evaluation: When testing network performance,
we employ the simplest and fastest method, which involves

directly loading the test data to assess the performance of every
model after training.

d) Setup: We conduct experiments using PyTorch 1.9.0,
and all models are evaluated on a single NVIDIA GeForce
GTX 1080Ti with CUDA 11.7, CUDNN 8.5, and TensorRT
8.5.3.

3) Evaluation Metrics: In order to evaluate the model
performance and complexity more comprehensively, we use
the IoU index of segmentation results to assess the model
performance and the number of model parameters and FLOPs
to evaluate model complexity and computational consumption.
The IoU is represented as a percentage, with higher IoU values
indicating better model performance. The calculation formula
is as follows:

IoU =
TP

TP + FN + FP
. (8)

True positives (TP) refer to positive predictions that match
the ground-truth. False negatives (FN) represent negative pre-
dictions that do not match the ground-truth. False positives
(FP) denote positive predictions that do not match the ground-
truth.

Additionally, the number of model parameters is the sum
of the number of parameters for all operations in the model,
and its unit is typically expressed in megaParams (M). The
calculation formula for the number of parameters of a single
convolution operation is shown in (1). The fewer the number
of model parameters, the lower the model complexity. The
model FLOPs parameter is the sum of FLOPs of all operations
in the model, with the unit generally being gigaFLOPS (G).
The calculation formula for FLOPs of a single convolution
operation is shown in (2). The lower the FLOPs of the
model, the lower the computational consumption. Therefore,
a lightweight model requires that the number of network
parameters and FLOPs be maintained at a low level.

B. Ablative Experiments

In this section, a comprehensive analysis of the lightweight
nature and feature extraction capability of the proposed Light
Block and Wide Block architectures is conducted by replacing
them with 3 × 3 convolution and 5 × 5 convolution lay-
ers. Subsequently, the jump connection aggregation structure
and the final split header structure are incorporated into the
network architecture in a step-by-step manner. By system-
atically examining the network’s performance with varying
degrees of ablation and conducting a thorough evaluation of
the number of network parameters and FLOPs, the efficacy
and lightweight advantages of the proposed components are
effectively demonstrated. The outcomes of the ablation exper-
iments are presented in Table II, where the number under
inclusion, patches, and scratches represents IoU (%) of models
on corresponding dataset.

The results presented in Table II demonstrate that the
proposed A-Net backbone yields commendable segmentation
performance and maintains a low parameter count and FLOPs
simultaneously, even in the absence of specifically designed
lightweight feature extraction modules, jump connections,
and segmentation headers. Upon incorporating the proposed
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TABLE II
ABLATIVE EXPERIMENTS ON THE NEU-SEG DATASET

lightweight feature extraction structure, the model’s parameter
count and FLOPs are reduced by more than 90%, compared
to the ordinary convolutional model, with a slight increase
in performance. This outcome validates the effectiveness of
the lightweight feature extraction module proposed in this
study, which uses special convolutions, dropout, and resid-
ual connection rationally to adapt the network to different
industrial surface defect detection datasets. Upon adopting
the jump connection structure, the model’s performance is
significantly improved while only adding a few parameters and
FLOPs.

Following the integration of the seg head structure proposed
in this study, the network’s performance on the NEU-inclusion
dataset is notably enhanced, while a slight performance
improvement is observed on other datasets. This observation
substantiates the efficacy of the seg head structure proposed
in enhancing the model’s generalization ability across various
datasets. Finally, from the perspective of model lightness, the
A-Net model structure’s parameter count determined in this
study is only 0.39M, and FLOPs are only 0.44G, thereby sat-
isfying the deployment requirements of edge devices (FLOPs
lower than 0.6G).

C. Comparative Experiments

We ended up choosing ten classical segmentation net-
works [FCN [3], SegNet [4], PSPNet [7], DeeplabV3+ [35],
RefineNet [17], U-Net [5], Swin-Unet [24], CCNet [36],
and two networks designed for industrial image segmentation
(PGA-Net [6], LSA-Net [37])], and seven light networks
(BiSeNet [9], BiSeNetV2 [10], STDC [38], ERFNet [16],
ESNet [25], ENet [25], and topformer [27]) that performs well
in natural images as the baseline network to compare with our
network.

1) NEU-Seg Dataset: Table III presents the performance of
each baseline network and the A-Net proposed in this paper
on the NEU-seg dataset. The number under inclusion, patches,
and scratches represents IoU (%) of models on corresponding
dataset, while “-” represents that the model cannot converge
effectively on the corresponding dataset. Besides, the wave line
under the number shows that the corresponding model ranks
second in this category, while the underline indicates ranking
third.

The analysis of various segmentation network performances
in the table reveals that larger models generally achieve higher
IoU scores than smaller models. In comparison with larger

TABLE III
PERFORMANCE OF DIFFERENT METHODS AND OUR METHOD ON THE

NEU-SEG DATASET

models, the A-Net proposed in this paper achieves the highest
IoU on the NEU-inclusion dataset and is only 1.15% away
from the highest IoU on the NEU-patches dataset. Besides,
the performance of A-Net on the scratches dataset ranks third
among all methods in the table. However, the Swin-Unet is
unable to effectively converge, because of the small datasets.
These results demonstrate that the A-Net proposed in this
paper exhibits excellent performance on the industrial surface
defect dataset.

In terms of network lightweightness, the A-Net proposed
in this paper achieves a remarkable advantage over large
models concerning the number of parameters and FLOPs.
Specifically, A-Net’s parameter quantity is only 1.32% of
SegNet, the network with the minimum parameters among the
large models, and its FLOPs are only 2.75% of the FLOPs of
FCN, the network with the lowest FLOPs among the large
networks. Compared to small models, A-Net’s number of
parameters and FLOPs are only slightly higher than those of
ENet and lower than other small models. Furthermore, it is
evident that the segmentation performance of A-Net surpasses
that of other small models. The A-Net architecture successfully
achieves the design goal of a lightweight network structure,
thereby attaining the best precision-lightweightness balance on
the NEU-seg dataset.

Fig. 5 displays the visual segmentation outputs of each
comparative network on the NEU-seg dataset. The results
demonstrate that A-Net not only accomplishes efficient defect
segmentation but also exhibits noteworthy proficiency in
detecting defects of diverse scales. Furthermore, A-Net man-
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Fig. 5. Visual display of the results of every network on the NEU-Seg Dataset.

ifests impressive boundary segmentation capabilities. These
accomplishments can primarily be attributed to the net-
work backbone and the lightweight feature extraction module
devised by the authors. This module comprises phased feature
extraction stages and feature fusion stages, which enables the
network to effectively extract and resolve features of varying
scales.

2) DAGM-Seg Dataset: Table IV presents the performance
of each baseline network and the A-Net model proposed in
this study, on the DAGM-seg dataset. In this table, the number
under Class7, Class8, Class9, and Class10 represents IoU (%)
of models on corresponding dataset, while “-” represents that
the model cannot converge effectively on the corresponding
dataset. In addition, the wave line under the number indicates
that the corresponding model ranks second in this category,
while the underline indicates ranking third.

The convergence performance of the comparison net-
works indicates that A-Net exhibits commendable convergence
performance similar to large models and can effectively
converge on the DAGM-seg dataset even with a limited
number of images (i.e., 250 images). In contrast, most of
the small comparative models and the Swin-Unet are unable
to converge effectively on DAGM-class8, DAGM-class9, and
DAGM-class10. Hence, the A-Net model surpasses its smaller
counterparts by demonstrating superior convergence capabili-
ties for datasets of smaller magnitudes.

Analysis of the performance of various networks, as pre-
sented in the table, reveals that larger models generally
achieve higher IoU values than smaller models. However,
among the models compared, the A-Net proposed in this
study outperforms all others by achieving the highest IoU on
the DAGM-class7 dataset. Additionally, A-Net’s performance
on the DAGM-class8 ranks second among all models in the
table, trailing only the U-Net in the classical model category.
Besides, A-Net’s performance on the DAGM-class8 ranks
third among all models in the table, trailing only the U-Net
and LSA-Net in the classical model category. Finally, the IoU
attained by A-Net on the DAGM-class9 dataset is only 0.34%
lower than the highest IoU recorded. These results attest to
the exceptional performance of the A-Net model on industrial
surface defect datasets.

Fig. 6 displays the visual segmentation outputs of each
comparative network on the DAGM-seg dataset, except for
networks that cannot converge effectively. It is obvious that the
A-Net also has powerful ability on segmenting small objects.

Considering the extremely low parameter quantity and
FLOPs of A-Net, the proposed A-Net segmentation net-
work achieves the best precision-lightweight trade-off on
the DAGM-seg dataset. This demonstrates the effectiveness
of the A-Net model in addressing the challenges posed by
industrial surface defect segmentation tasks while maintaining
a lightweight architecture suitable for deployment on edge
devices.
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Fig. 6. Visual display of the results of every network on the DAGM-seg Dataset.

TABLE IV
PERFORMANCE OF DIFFERENT METHODS AND OUR METHOD ON THE

DAGM-SEG DATASET

3) MCSD Dataset: Table V presents the performance of
each baseline network, as well as the A-Net model proposed
in this study, on the MCSD dataset. In this table, the number
under MCSD represents IoU (%) of models on corresponding
dataset, while “-” represents that the model cannot converge
effectively on the corresponding dataset. Moreover, the wave
line under the number indicates that the corresponding model
ranks second in this category, while the underline indicates
ranking third.

From Table V, compared to the competitive classical net-
work and the network designed for industrial surface defect
detection, our model achieves the best performance with
extremely low parameter quantity. Besides, compared to the
lightweight network model, our model performance is much

TABLE V
PERFORMANCE OF DIFFERENT METHODS AND OUR METHOD ON THE

MCSD DATASET

higher and the parameter quantity is also relatively low. These
results demonstrate the effectiveness of the A-Net model in
addressing the challenges posed by industrial surface defect
segmentation tasks.

Fig. 7 displays the visual segmentation outputs of each com-
parative network on the MCSD dataset, except for networks
that cannot converge effectively. From Fig. 7, our method
shows the best segmentation performance and the highest
recognition ability.

4) MT Dataset: Table VI presents the performance of each
baseline network, as well as the A-Net model proposed in
this study, on the MT dataset. The number under MT repre-
sents IoU (%) of models on corresponding dataset, while “-”
represents that the model cannot converge effectively on the
corresponding dataset. Furthermore, the wave line under the
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Fig. 7. Visual display of the results of every network on the MCSD Dataset.

TABLE VI
PERFORMANCE OF DIFFERENT METHODS AND OUR METHOD ON THE MT

DATASET

number indicates ranking second and the underline indicates
ranking third.

From the table, it can be seen that on the MT dataset, our
lightweight model A-Net can compete with the best perform-
ing model, and has a gap of only 0.36% compared to the
highest performing IoU, which shows that the A-Net performs
better than many classical models in the table. Considering
the extremely low parameter quantity and FLOPs of A-Net,
the proposed A-Net segmentation network achieves the best
precision-lightweight balance on the MT dataset.

Fig. 8 displays the visual segmentation outputs of each
comparative network on the MT dataset, except for networks
that cannot converge effectively. From Fig. 8, it can be seen

Fig. 8. Visual display of the results of every network on the MT Dataset.

Fig. 9. Results of inference speed test on edge devices.

that A-Net has excellent segmentation ability for small defects,
which is sufficient to compete with classical network models
and networks designed for industrial surface defect detection.

D. Inference Speed Test on CPU

To better simulate model deployment at the industrial edge
and explore the inference speed of the model without GPU
acceleration, we use the Benchmark Python Tool in Open-
VINO [39] to test the inference speed of BiSeNet, BiSeNetV2,
STDC, ERFNet, ESNet, TopFormer, ENet, and A-Net on
two edge devices, which are CPU-based platforms (Intel(R)
Core(TM) i7-10750H CPU @ 2.60 GHz in windows and Intel
Xeon(R) CPU E5-2650 v4 @ 2.20 GHz in Ubuntu 18.04). The
test is set as follows: The input image size is 3 × 224 × 224,
the batch size is 1, and the test epoch number is 5000.

The results obtained from the test, as shown in Fig. 9,
demonstrate that the A-Net model proposed in this study
outperforms other models in terms of inference speed on both
Windows and Linux systems. The slower inference speed on
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Windows systems can be attributed to the greater number of
irrelevant processes competing for system resources.

Despite this, the proposed A-Net architecture achieves
inference speeds that are several times faster than those of
real-time or lightweight semantic segmentation networks, such
as BiSeNet, BiSeNetV2, ERFNet, and ESNet, when running
on a CPU. Additionally, A-Net approaches the inference
speeds of the lightest network, ENet, on CPU, thereby estab-
lishing its superiority over competing models.

These results confirm the effectiveness of the A-Net model
for deployment on industrial edge devices, where high-speed
inference and lightweight architecture are crucial for real-time
processing and analysis of industrial surface defects. By out-
performing other state-of-the-art models, A-Net proves to be a
suitable solution for addressing the challenges associated with
industrial edge computing.

E. Experiment Conclusion

Based on the performance and inference speed tests con-
ducted in previous sections, along with the analyses of
parameter numbers and FLOPs, and the inference frames per
second (FPS) tests performed on CPU, it is evident that the
A-Net network structure proposed in this study demonstrates
competitive performance on various industrial surface defect
segmentation datasets when compared to classical semantic
segmentation network models.

In addition, A-Net boasts an impressively low parame-
ter count and FLOPs, while also achieving high inference
speeds on CPU platforms. These attributes contribute to the
lightweight nature and computational efficiency of the A-Net
model, making it particularly well-suited for deployment on
edge devices in industrial settings.

In conclusion, the A-Net network structure achieves an
optimal balance between precision and speed compared to the
other networks examined in this study. This balance makes it
a promising solution for real-time detection and analysis of
industrial surface defects, thereby addressing the challenges
associated with industrial edge computing.

V. CONCLUSION

In this article, we have presented A-Net, a lightweight and
real-time network for industrial surface defect segmentation,
specifically designed to address the challenges arising from
limited data, varying defect sizes, irregular outlines, and subtle
differences between defect and normal areas. The proposed
A-shaped network structure consists of two main components,
feature extraction and feature fusion, efficiently extracting
low-level detail and high-level semantic information while
facilitating the aggregation of information at different levels.

Through the design of lightweight convolution blocks,
we have managed to prevent overfitting, gradient disappear-
ance, and gradient explosion, making the network suitable
for small datasets. Moreover, A-Net demonstrates competitive
performance compared to classic large models, such as U-
Net, while significantly reducing the number of parameters and
computational costs and shows high inference speed without
GPU acceleration.

However, in these comparative experiments, though the
A-Net can achieve performance that competes with other
networks, it cannot achieve the highest performance among
all the models on all defect categories, which is the flaw of
our method. In the future, we are going to further improve the
performance of lightweight neural network designed for the
surface defect detection field.

Our work contributes to the ongoing development of
effective and efficient defect segmentation networks, paving
the way for real-world industrial applications with limited
resources. Future research directions include further opti-
mization of the network architecture, exploring additional
lightweight approaches, and investigating the applicability of
A-Net to other domains and tasks that require low-latency and
computationally efficient models.
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