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Abstract—This paper focuses on the challenge of surface defect
detection in manufacturing, particularly under conditions of
background variation and noise interference. To tackle this issue,
a novel Background-Adaptive Surface Defect Detection Network
(BANet) is proposed. The BANet enhances the defect detection
capabilities by improving generalization capacity through learn-
ing comparative abilities between positive samples and testing
samples. In order to mitigate the impact of three types of
noise (texture variation, translation, and rotation), a Foreground
Edge Attention Mechanism (FEAM) and a Spatial Transformer
Module (STM) are introduced. The FEAM enhances the model’s
ability to differentiate between foreground and background,
thereby effectively reducing texture variation noise. The STM
uses affine transformations to eliminate translation and rotation
noise. The effectiveness of the proposed network is validated
on Optical Communication Devices (OCDs) dataset, with results
indicating superior performance compared to prevailing state-of-
the-art methods. The findings of this study highlight the potential
of our approach in effectively addressing surface defect detection
in variable backgrounds and noisy conditions, thereby contribut-
ing significantly to the quality and reliability of manufacturing
processes.

Index Terms—Surface Defect Detection, Background-Adaptive,
Positive Sample based, Spatial Transformer Networks

I. INTRODUCTION

In the rapidly accelerating realm of industrialization and
advanced manufacturing, the importance of defect detection
has surged dramatically. Playing a pivotal role across numer-
ous sectors, such as materials science, manufacturing, aviation,
electronics, and quality control, it underpins product quality,

*Tongzhi Niu and Biao Chen contributed equally to this work. **Bin Li is
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Fig. 1. Background-Adaptive Surface Defect Detection Neural Networks
via Positive Samples. We introduce a foreground edge attention mechanism
(FEAM) to mitigate texture variation noise and a spatial transformer module
(STM) to counteract translation and rotation noise.

reinforces process reliability, and reduces wastage. Further-
more, it contributes to ensuring the structural integrity and
functionality of the end-products, thereby directly affecting
customer safety and satisfaction.

Despite the progress made in deep learning algorithms, sur-
face defect detection continues to pose a significant challenge
due to several factors. These include the imbalance between
defect and non-defect areas, the multiple scales and shapes de-
fects, intra-class inconsistency, and inter-class distinction. The
advent of sophisticated algorithms like PGANet [1] and AIS-
Net [2] has successfully addressed some of these challenges,
utilizing attention mechanisms and multi-scale feature fusion
to achieve unparalleled precision. However, these methods pre-
suppose identical distribution of training and testing datasets



- a scenario rarely met in some real-world applications due to
continuous and batch-specific changes in sample backgrounds.

The trend towards flexible production lines catering to small
batches and product variety leads to substantial variations
between different batches. These dynamic conditions under-
score the need for innovative solutions that can accommodate
such variability, ensuring reliable performance. As a response,
methods based on Few-shot learning and domain adaptation
have been introduced for defect detection tasks. These methods
fall into two categories: foreground (defect) adaptation and
background (defect-free) adaptation. Foreground adaptation,
as exemplified by TGRNet’s novel C-way N-shot W-normal
method [3], constructs graph-structured data based on posi-
tive sample background features and few-shot sample fore-
ground features, achieving generalization to new defect types.
Background-adaptation, represented by Shuai et al.’s one-
shot unsupervised domain adaptation framework (OUDA) [4],
effectively facilitates surface defect detection across different
Rails types.

This paper primarily focuses on background-adaptation.
Given the inherent imbalance in defect detection data, positive
samples for new batches are usually more readily available.
Hence, existing methods [3], [5], [6] often emphasize learning
the ability to compare testing samples with positive samples,
promoting background adaptation based on these positive sam-
ples. This approach promises to enhance the generalizability
and applicability of defect detection systems across varied real-
world scenarios.

The challenge lies in distinguishing between true defects
and variations caused by noise, as differences between testing
and positive samples extend beyond defect features. This noise
is categorized into texture variation noise, translation noise,
and rotation noise. Existing methods have approached the
noise issue in various ways. For instance, Sianmese Unet [5]
subtracts the features of the positive sample directly from the
test sample to obtain anomaly features, but this method does
not take noise interference into account. On the other hand,
OUDA [4] uses style transfer to remove texture variation noise,
achieving detection of different types of rail defects. DSSSnet
[6] proposes a kind of class-max pooling method to suppress
noise, enabling the detection of PCB defects. However, these
methods do not separately discuss different types of noise or
delve into the forms of noise and methods for their elimination.

As a solution, the introduction of a novel framework,
Background-Adaptive Surface Defect Detection Neural Net-
works via Positive samples (BANet), aims to eliminate dif-
ferent noise types. Incorporated within this framework is a
foreground edge attention mechanism (FEAM) to mitigate
texture variation noise and a spatial transformer module (STM)
to counteract translation and rotation noise.

First, texture variation noise emerges as patterns of pixel
value shifts within the backdrop. To address this, inspired
by DFNNet [7], a FEAM is proposed. The aim with FEAM
is to enhance the network’s proficiency in differentiating
foreground from background areas. This mechanism, which
operates across low to high levels, is capable of concurrently

acquiring precise edge details from low-level features and
procuring semantic data from high-level ones, allowing for
better generalization across diverse background texture varia-
tions.

Second, translation and rotation noise manifest as alterations
in the relative positioning of background features relative
to positive samples, incorporating both shifts and rotations.
Given the innate invariance of Convolutional Neural Networks
(CNNs) to translation and rotation, these types of noise present
formidable obstacles to elimination. Drawing inspiration from
Spatial Transformer Networks (STNs) [8], an STM is proposed
to address these noise types based on affine transformations.
This innovative module is designed to counteract the per-
turbing impacts of these noise types, thereby bolstering the
model’s precision in real-world defect detection scenarios

In summary, this paper contributes:

• A Background-Adaptive Surface Defect Detection Net-
work enhancing generalization capacity by learning the
comparison ability between positive and testing samples.

• A Foreground Edge Attention Mechanism (FEAM) de-
signed to enhance the model’s ability to distinguish
between the foreground and background and effectively
eliminate texture variation noise.

• A Spatial Transformer Module (STM) based on affine
transformations, eliminating translation and rotation
noise.

• Empirical validation of our model on Optical Commu-
nication Devices (OCDs) dataset, demonstrating superior
performance and potential for practical applications.

II. RELATED WORKS

The work presented in this paper draws upon two major
areas in deep learning: attention mechanisms and domain
adaptation. Here we review the most pertinent work in these
fields, particularly as they relate to defect detection in indus-
trial manufacturing contexts.

A. Attention Mechanisms

The concept of attention mechanisms, initially inspired by
human visual attention, has been widely incorporated in deep
learning models to help them focus on relevant features and
ignore irrelevant ones.

Recurrent Models of Visual Attention (RAM) processes
inputs sequentially, deciding where to look next based on
past observations [9]. Spatial Transformer Networks (STN)
actively spatially transform feature maps, providing invariance
to translation, scale, rotation, and other affine transformations
[8]. Squeeze-and-Excitation Networks boost the performance
of CNNs by explicitly modeling the interdependencies be-
tween the channels of convolutional features [10]. Non-local
Neural Networks capture long-range dependencies based on
the self-attention mechanism, useful in video understanding
and 3D tasks [11]. Vision Transformer applies Transformers
directly to image patches, treating an image as a sequence of



patches [12]. Swin Transformer applies transformers to non-
overlapping windows of features at different scales, reducing
complexity and enabling broader application [13].

In surface defect detection, PGA-Net [1] design a global
context attention module, which embedded in these resolutions
to ensure efficient information transfer from low-resolution to
high-resolution. AIS-Net [2] present a dual attention context
guidance module for achieving full utilization of global and
local context information of defect feature maps, thereby
capturing more information of tiny defects. RetinaNet with
difference channel attention and adaptively spatial feature
fusion is propsed for steel suface defect detection [14].

In our research, building upon the solid foundation of at-
tention mechanisms as established in models such as DFNNet
and STN, we propose and implement novel attention strategies
— FEAM and STM.

B. Domain Adaptation

Domain adaptation addresses the problem of performance
degradation that occurs when the distribution of training data
differs from that of testing data. This is a major concern
in many real-world applications, where the model needs to
generalize well across different contexts.

The evolution of domain adaptation techniques started with
the development of the Domain Adversarial Neural Network
(DANN), which introduced a domain adversarial loss to
overcome the challenge of domain shift, enhancing model
generalization across different feature distributions [15]. This
was followed by the introduction of Cycle-Consistent Gener-
ative Adversarial Networks (CycleGAN), which innovatively
utilized cycle-consistent adversarial loss for unpaired image-
to-image translation, allowing transformations between dis-
tinct domains without requiring paired training examples [16].
While this approach has the advantage of bypassing the need
for labeling target domain images, it hinges on the availability
of an ample volume of target domain samples. Though this
method eliminates the need for target domain image labeling,
it relies on the ample availability of such samples. Given the
scarcity of defect samples, collecting adequate target domain
data can be even more challenging than the labeling effort
itself.

The ASM [17] framework introduced a solution to the
paucity of target domain samples through a one-shot un-
supervised domain adaptation approach. This was achieved
by ingeniously integrating the style transfer and task-specific
modules in an adversarial manner. Similarly, the OUDA [4]
method proposed an innovative shape-consistent, one-shot,
unsupervised domain adaptation strategy, designed specifically
to mitigate performance degradation associated with domain
shifts.

Building upon the existing methodologies, our work pivots
around meticulously addressing the noise discrepancies be-
tween positive and test samples. This includes an in-depth ex-
ploration and categorization of various types of noise, followed
by the proposition of novel methodologies for their effective
alleviation.

III. METHODOLOGY

A. Problem Definition

This paper focus on the problem of background-adaption.
It is assumed to have access to the source domain Ds =
(xs

i , x̂
s
i , y

s
i )

N
i , where xs

i denote the samples, x̂s
i denote the

positive samples, and both xs
i and corresponding x̂s

i belong
to the same batch. And only positive samples Dt = (x̂t

i)
N
i

is available for domain adaptation. The goal of background-
adaption is to use these samples to train a model that accurately
segments defect in the target domain. It is worth noting that
the source and target domain foreground features belong to
the same domain, while the background features have domain
shifts.

B. Noise Types and Definition

This paper primarily addresses the challenge of noise mit-
igation during the comparative analysis between positive and
test samples to effectively extract the defect features. To
facilitate understanding, we represent features with a 3 × 3
matrix. The feature matrix for the positive sample Fx̂i (without
noise) and defect sample F d

xi
(without noise) are as follows:

Fx̂i =

f1,1 f1,2 f1,3
f2,1 f2,2 f2,3
f3,1 f3,2 f3,3

 (1)

where fi,j represents the local feature at coordinates (i, j),
with both i and j capable of assuming the values 0, 1, or 2.

F d
xi

=

f1,1 f1,2 f1,3
f2,1 d2,2 d2,3

f3,1 f3,2 f3,3

 (2)

herein di,j represents the defect feature at coordinates (i, j).
Subsequently, the classifications for noise are delineated as

follows:
1) Texture Variation Noise: This noise category is char-

acterized by alterations in the product’s surface attributes,
predominantly due to the batch-to-batch variations in the
product constituents. The feature matrix of test sample with
texture variation noise (without defect) is:

F v
xi

=

λ(f1,1) λ(f1,2) λ(f1,3)
λ(f2,1) λ(f2,2) λ(f2,3)
λ(f3,1) λ(z3,2) λ(f3,3)

 (3)

2) Translation Noise: This type of noise emerges from
displacements of background elements or workpieces, leading
to shifts from their initial positioning. The feature matrix of
test sample with translation noise (without defect) is:

F t
xi

=

f1,1 f1,2 f1,3
f3,1 f3,2 f3,3

f2,1 f2,2 f2,3

 (4)

3) Rotation Noise: This category of noise is ascribed to
the rotational movements of background elements, causing
deviations from their default orientation. The feature matrix
of test sample with rotation noise (without defect) is:



F r
xi

=

f1,1 f2,3 f2,3
f1,2 f2,2 f3,2

f3,1 f2,1 f3,3

 (5)

C. Overview
BANet doesn’t directly learn the representational capability

of samples. Instead, it develops an adaptive detection for
different product batches by learning the contrastive ability
between positive and test samples. The network architecture
resembles a Siamese network, as shown in Fig. 2. A Fore-
ground Edge Attention Mechanism (FEAM) is employed to
alleviate texture variation noise, while a Spatial Transformer
Module (STM) is utilized to counteract translation and rotation
noise. To further enhance network training, we introduce a
deep supervision loss function in the feature decoding seg-
ment. Detailed descriptions of the FEAM, STM, and the loss
function will follow.

D. Foreground Edge Attention Mechanism (FEAM)
In the case of texture variation noise, the inherent robust

feature representation potential of neural networks could di-
rectly mitigate such noise. Therefore, a FEAM blueis designed
to enhance the network’s ability to distinguish between the
foreground and background. FEAM operates by directly learn-
ing a semantic boundary under explicit semantic boundary
supervision, mirroring the characteristics of a semantic bound-
ary detection task. This approach facilitates distinguishing
features on either side of the semantic boundary, enhancing
the network’s sensitivity to nuances between foreground and
background.

As shown in Fig. 3, the FEAM, functioning in a stage-wise
manner, is capable of concurrently extracting accurate edge
information from low-level features and semantic information
from high-level features. This approach helps to compensate
for the lack of semantic information in the original edges.
The incorporation of high-level semantic information refines
the detailed edge information extracted from the lower stages.
The network’s supervisory signal is derived from the ground
truth of the semantic segmentation through the application of
traditional image processing techniques, such as the Canny
method.

In this context, the Loss function Lassist1 deployed is the
Binary Cross-Entropy Loss (BCELoss), which is specifically
formulated as follows:

Lassist1(p, y) =− 1

N

N∑
i=1

Canny(yi) log(pi)

+ (1− Canny(yi)) log(1− pi)

(6)

where N is the total number of samples. yi is the true label
for sample i. pi is the predicted probability of observation i
obtained by FEAM. Canny(yi) is the Canny operator applied
to the true label of sample i.

In addition, network capabilities are enhanced by employing
deep supervision within the decoder. The associated loss
Lassist2 function is defined as follows:

Lassist2(p, y) =− 1

N

N∑
i=1

yi log(pi)

+ (1− yi) log(1− pi)

(7)

where pi represents the concatenated features from all layers
of the decoder, which are subsequently processed through a
3× 3 convolution operation.

E. Spatial Transformer Module (STM)

In the face of displacement and rotation noise, the position
of the features changes. The aim is to correct the coordinates of
the feature positions via affine transformations. Inspired by the
STN [8], the proposed STM follows the structure illustrated in
Figure 4, which primarily comprises the Localization Network
and Grid Generator components.

1) Localization network: The localization network pro-
cesses the input feature map Fxi

, F x̂i ∈ RH×W×C , which
exhibits a width W , height H , and channels C. The network
subsequently generates θ, the parameters that prescribe the
transformation τθ to be enacted on the feature map: θ =
floc(Fx̂i

). As illustrated in equation 8, the dimensions of the
affine transformation θ amount to six.

The function floc() of the localization network constitutes a
convolutional network, further incorporating a fully-connected
network in its final regression layer, designed to generate the
transformation parameters θ.

2) Grid generator: In this research, affine transformations
are applied to multiple feature layers. The output features are
defined to rest on a regular grid G = {Gi}, where each
feature Gi corresponds to (xt

i, y
t
i). For clarity, assuming that

τθ represents a 2D affine transformation Aθ, the pointwise
transformation can be expressed as follows:

(
xs
i

ysi

)
= τθ(Gi) = Aθ

xt
i

yti
1

 =

[
θ11 θ12 θ13
θ21 θ22 θ23

]xt
i

yti
1


(8)

where (xt
i, y

t
i) are the target coordinates of the regular grid in

the output feature map, (xs
i , y

s
i ) are the source coordinates in

the input feature map that define the sample points.
Normalized coordinates in terms of height H and width W

are employed, ensuring the transformed features fall within
the spatial bounds of the output. The transformation and
sampling process aligns with the standard texture mapping
and coordinate usage in graphic processing.

Defined by equation 8, the transformation enables trans-
lation, and rotation of the input feature map. This requires
merely six parameters (the six elements of Aθ) to be produced
by the localization network.

With an intention to apply a translation of a units along the
x-direction and b units along the y-direction, the parameter
transformation can be represented as follows:

Aθ =

[
1 0 a
0 1 b

]
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In this case, the transformation matrix Aθ would shift each
point in the feature space by a units in the x-direction and b
units in the y-direction, effectively translating the entire feature
map.

If the objective is to rotate the image by an angle of θ, the
transformation parameters are represented as:

Aθ =

[
cos θ − sin θ 0
sin θ cos θ 0

]
This rotation matrix will rotate each point in the image

counter-clockwise by an angle θ around the origin of the
coordinate system.

F. Loss Function

Managing pixel-level defects can be challenging due to
their typically sparse occurrence and the resultant imbalanced
distribution between positive and negative class pixels. To
tackle this imbalance, we incorporated the focal loss function
[18] into our model. This function places a greater emphasis on
hard-to-segment and mis-segmented pixels, helping to alleviate
the issues stemming from data imbalance. The focal loss is
defined as follows:

Llocal = −α(1− pt)
γ log(pt) (9)

In the equation above, pt ∈ [0, 1] represents the probability
obtained by GWNet. γ ≥ 0 is a modifiable focusing parameter;
when set to 0, the focal loss is equivalent to cross entropy
loss. As the value of γ increases, the effect of the modulating
factor is similarly amplified (we utilized γ = 2 in our model).
α ∈ [0, 1] serves as a weighting factor to counteract class
imbalance (in our model, we set α = 0.25).

Therefore, according to equation 6, 7, and 9, the final loss
Lfinal:

Lfinal = (1− 2α)Llocal + αLassist1 + αLassist2 (10)

In this equation, α is a hyperparameter which is set to 0.25
in our work.



IV. EXPERIMENTS

A. Implementation details

BANet is instantiated on the PyTorch framework, using a
single NVIDIA GeForce RTX 4090 for computation. For the
training process, the Adam optimizer is deployed, a batch size
of 16 is maintained and a learning rate of 0.00001 is utilized.
This configuration offers an optimal balance between resource
usage and network performance.

B. Evaluation Metrics

For a comprehensive comparison of various methodologies,
five widely recognized metrics are applied, typically used
for semantic segmentation performance evaluation: Precision
(Pre), Recall (Rec), F-measure (F1), and mean Intersection
over Union (mIoU).

The mIoU is a particularly pertinent evaluation metric for
semantic segmentation, gauging the extent of overlap between
the predicted and ground truth labels. The F-measure, a har-
monic mean of precision and recall, provides a comprehensive
reflection of the performance in binary semantic segmentation
tasks. The formal definitions of these metrics are as follows:

Pre =
TP

TP + FP
(11)

Rec =
TP

TP + FN
(12)

F1 =
2× Pre×Rec

Pre+Rec
(13)

mIoU =
TP

FP + FN + TP
(14)

where, TP, FP, TN, and FN signify the count of true positives,
false positives, true negatives, and false negatives respectively.

C. Dataset description

The effectiveness of BANet is validated on Optical Commu-
nication Devices (OCDs) datasets [19]. The OCDs dataset is
collected from the flexible production line of optical commu-
nication devices, with obvious characteristics of small batches
and multiple types. And there are noises between inputs and
templates, including texture variation, translation, and rotation
noise.

Comprised within the constructed dataset are 918 data sets,
inclusive of 60 sets denoting base crushing, 27 sets marking
base scratches, 375 sets representing component pollution, 240
sets highlighting component breakage, and 216 sets signifying
more or fewer jump wires. The division of this dataset into
training, validation, and testing segments adheres to a 6:2:2
ratio.

D. Comparison with the state-of-the-art model

Proposed BANet is compared with eleven state-of-the-art
methods, including five classical segmentation methods (U-Net
[20], FCN [21], SegNet [22], DeepLabV3+ [23]), and PGANet
[1], four attention based segmentation methods (CCNet [24],
DUNet [25], DANet [26]) and Swin-U-Net [27], and two
unsupervised domain adative methods (DSSSNet [6], Siamese
U-Net [5]).

1) Quantitatively Analysis: As depicted in Table I, it can
be observed that among the traditional segmentation methods,
DeepLabV3+ exhibits superior performance, demonstrating re-
markable generalization capabilities. Attention-based methods
overall exhibit subpar performance, indicating that standalone
attention mechanisms provide minimal assistance for domain
adaptation. With the incorporation of comparison-oriented
strategies, while the Siamese U-net, which does not handle
noise, shows no noticeable improvement over U-net, DSSSNet
makes a substantial leap in performance after processing
noise through class-max pooling. Compared to DSSSNet, our
method boosts the mIoU by 7.41%, confirming the effective-
ness of our approach in handling noise. At last, while proposed
approach indeed involves a higher level of computational
complexity and parameter quantity, it correspondingly delivers
exceptionally robust results.

2) Qualitatively Analysis: As illustrated in Figure 5, tradi-
tional and attention-based methods are susceptible to noise.
In contrast, DSSSNet outperforms other methods to a de-
gree. However, its noise handling capabilities still fall short
compared to BANet, particularly regarding displacement and
rotation noise. Pooling operations combined with convolution
operations ensure a certain degree of translational invariance
for the network, but this implicit invariance is limited. By
explicitly implementing affine transformations, displacement
and rotation noise has been successfully eliminated, yielding
exceptionally satisfying results.

E. Ablation studies and discussion

In the ablation studies, positive samples and test samples are
concatenated along the channel direction and directly input
them into the U-Net network with skip connections as the
baseline. This is compared to a Siamese network with FEAM
and STM components removed. This process produces the
results shown in Table II and Figure 6.

As illustrated in Table II, in comparison to the two funda-
mental networks, our approach significantly improved detec-
tion performance, with an mIoU increase of 11.71% and a F1
Score increase of 6.89%. Figure 6, which uses class activation
to display the feature map, shows that our method successfully
eliminates texture variation, displacement, and rotation noise,
accurately extracting defect features.

Furthermore, according to the results in Figure 6, a com-
parison reveals that compared to the baseline, EFAM results
in an IoU enhancement of 10.47%. EFAM empowers the
network with superior discrimination between foreground and
background, enabling the learning of more distinct features.



TABLE I
QUANTITATIVE COMPARISON WITH STATE-OF-ARTS METHODS

Method Pre Recall F1 mIoU Params(MB) Flops(G)

Classical segmentation methods

U-Net 0.8597 0.6926 0.7590 0.6325 7.68 14.27
FCN 0.8831 0.7376 0.8038 0.6580 22.35 10.28

SegNet 0.8949 0.3907 0.5440 0.3662 40.47 29.45
DeepLabV3+ 0.8295 0.7967 0.8128 0.6702 59.47 24.09

PGANet 0.9186 0.4793 0.6299 0.4483 51.40 51.50

Attention-based methods

CCNet 0.8224 0.3875 0.5268 0.3614 67.70 39.18
DUNet 0.8716 0.3100 0.4574 0.2942 13.58 35.11
DANet 0.8220 0.5748 0.6765 0.5130 47.46 14.76

Swin-U-Net 0.6612 0.2569 0.3700 0.2076 27.15 7.74

Unsupervised domain adaption methods Siamese U-Net 0.8913 0.6946 0.7807 0.6243 7.85 18.53
DSSSNet 0.8931 0.8148 0.8521 0.7405 6.10 14.36

Ours BANet 0.8827 0.9214 0.8935 0.8146 28.51 43.19

（1）

（2）

（3）

（4）

（5）

（6）

（7）

Positive Test Label U-Net FCN SegNet
DeepLab

V3+
PGANet CCNet DANet DUNet

Siamese 

U-Net
DSSSNet

Swin-

UNet
BANet

Fig. 5. Visual comparison with state-of-the-arts methods. Proposed BANet is compared with eleven state-of-the-art methods, including five classical
segmentation methods (U-Net [20], FCN [21], SegNet [22], DeepLabV3+ [23]), and PGANet [1], four attention based segmentation methods (CCNet [24],
DUNet [25], DANet [26]) and Swin-U-Net [27], and two unsupervised domain adative methods (DSSSNet [6], Siamese U-Net [5])

Moreover, STM elevates the IoU by 10.76%, reducing the im-
pact of background noise on the segmentation results through
explicit rotational and translational modifications. Ultimately,
BANet further boosts the IoU by 13.80%, providing evidence
that EFAM and STM contribute differently to the segmentation
outcome, and both exhibit effectiveness.

V. CONCLUSION

This paper has tackled the crucial issue of defect detection
in an ever-evolving industrial landscape. The Background-
Adaptive Surface Defect Detection Neural Networks via Posi-
tive samples (BANet) was developed, addressing the problem
of texture variation, translation, and rotation noise. Through
the Foreground Edge Attention Mechanism (FEAM) and Spa-
tial Transformer Module (STM), the proposed model exhibits
an improved ability to distinguish between foreground and
background, and to manage different types of noise. The

empirical testing of our model on OCDs dataset validated its
superior performance and potential practical applicability.

Traditional methods based on Convolutional Neural Net-
works (CNNs) often struggle with maintaining invariance to
translation and rotation, which can pose significant challenges,
especially when comparing template samples amidst back-
ground noise. Our study has introduced an explicit method to
address this issue, leveraging the Spatial Transformer Network
to effectively eliminate translation and rotation noise. This
strategy holds substantial practical significance, as it has
shown promising results in our investigations.

Looking ahead, our future work will concentrate on en-
hancing the adaptability and generalization capacity of our
model. We aim to develop our model to effectively meet the
challenges posed by the constantly changing manufacturing
environment, which would contribute substantially to the reli-



TABLE II
RESULTS OF ABLATION

Modules Baseline Siamese EFAM STM mIoU F1 Params(MB) Flops(G)
S1 ✓ 0.6766 0.8102 25.98 31.30
S2 ✓ ✓ 0.6975 0.8246 25.98 40.60
S3 ✓ ✓ ✓ 0.8022 0.8858 27.79 43.12
S4 ✓ ✓ ✓ 0.8051 0.8871 26.72 40.70
S5 ✓ ✓ ✓ ✓ 0.8146 0.8935 28.51 43.19

(a) Positive (b) Test (c) Siamese (d) BANet

(2) 

Translation

(3) 

Rotation

(1) 

Texture 

Variation

Fig. 6. Visual Result of Ablation. Class activation maps serve as the depiction
of features. The outcome of direct subtraction manifests in column (c),
whereas the result of BANet is presented in column (d). The efficacy of BANet
in eliminating noise induced by alterations in background texture, translations,
rotations, with a concentrated focus on the genuine defect regions.

ability and efficiency of automated manufacturing systems.
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