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Abstract—In the field of surface defect detection, there
is a significant imbalance between the number of pos-
itive and negative samples, which has led to a grow-
ing interest in positive-samples-based anomaly detection
methods. Reconstruction-based methods are currently the
most commonly used approach, but they often struggle to
repair abnormal foregrounds and reconstruct clear back-
grounds simultaneously. To address this issue, we propose
a new approach called the forgetting-inputting-based feature
fusion and multiple hierarchical feature difference network
(FIM-Net). The FIM-Net method incorporates a novel latent
feature repair module (LFRM), which combines encoding and
memory-encoding obtained by memory-augmented module
(MAM) via a novel forgetting-inputting-based feature fusion module (FIFFM) to repair abnormal foregrounds while pre-
serving clear backgrounds. Additionally, we introduce a manual defect generation algorithm (MDGA) to simulate realistic
and feature-rich anomalies. Finally, we use a multiple hierarchical feature difference (MHFD) for defect segmentation to
achieve more accurate defect location. Our extensive comparison experiments demonstrate that the FIM-Net method
achieves the state-of-the-art detection accuracy and shows great potential for industrial applications.

Index Terms— Anomaly detection, artificial anomaly images, forgetting-inputting-based feature fusion module (FIFFM),
multiple hierarchical feature difference (MHFD), surface defect detection.

I. INTRODUCTION

IN THE industrial field, due to the complexity of the
manufacturing process, surface defects are frequently found

in various industrial products, including but not limited to
fabrics [1] and steel [2], [3]. These defects not only lead to
poor user experience but also may cause industrial accidents.
For example, surface defects of steel may reduce the contact
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fatigue strength of the material. Therefore, defects inspection
is an important method to achieve quality management. Over
the past decades, there have been various surface defect
detection methods proposed, which can be broadly categorized
into two groups: traditional methods and deep learning-based
methods. Traditional methods [4], [5], [6] mainly extract fea-
tures manually and set thresholds to detect defects. However,
the feature extraction ability of the above methods is limited
and the robustness is poor. Deep learning is a data-driven
method that can automatically extract features by training on
large amounts of data. It possesses a strong feature extraction
capability and exhibits good generalization.

The majority of deep learning-based methods for surface
defect detection are supervised learning approaches [7], [8],
[9], [10]. Dong et al. [10] leverage the global contextual infor-
mation derived from low-resolution feature maps to augment
the semantic representation of high-resolution feature maps,
thereby enhancing the performance of segmentation tasks.
However, it should be noted that these methods require a
significant number of defective samples and their correspond-
ing labels, which can be challenging to obtain in industrial
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Fig. 1. Reconstruction results of different methods. (a) Original image.
(b)–(d) Reconstructed images using AE [14], MemAE [15], and our
proposed method FIM-Net, respectively. The red circles and green
dotted boxes indicate defects and textures, respectively.

settings. Two main challenges exist in data collection and
labeling for defect detection in industry. First, the number of
defect-free samples greatly exceeds that of defective samples,
and unknown defect types may arise during the production
process. Therefore, collecting sufficient data becomes a critical
challenge. Second, sample labeling requires skilled engineers
to invest considerable time and effort, resulting in high labor
costs and time consumption. These factors limit the practical
applicability of supervised learning in the industrial field.

Unsupervised learning methods have become increasingly
popular due to their ability to train only on unlabeled nor-
mal samples. In recent years, unsupervised anomaly detec-
tion methods have made significant progress in the field of
defect detection. For example, RIAD [11] addresses anomaly
detection as a reconstruction-by-inpainting problem and has
achieved remarkable results in image anomaly detection. Other
methods, such as the deep adversarial anomaly detection
method was proposed by Zhang et al. [12] and the normal
features distribution model proposed by Cho et al. [13],
have also shown excellent results in anomaly detection tasks.
These unsupervised anomaly detection methods have shown
great potential in defect detection tasks, which is particularly
useful in the industrial field where obtaining a large number
of defective samples and their corresponding labels can be
challenging.

Trained on normal samples, anomaly detection models are
expected to generate larger reconstruction or generation errors
for anomalies compared to normal samples. Therefore, the
two most important capabilities of the model are the ability
to reconstruct normal backgrounds and the ability to repair
abnormal foregrounds. Common auto-encoder (AE) [14] typ-
ically feeds the latent features directly to the decoder, leading
to a representation of the latent space that is often under-
designed. As a result, these models are capable of the former
but not the latter. MemAE [15] proposes an improved AE
that repairs the abnormal foregrounds by editing latent codes
with a memory-augment module. The proposal of MemAE
greatly enhances the repair ability of abnormal foreground
but weakens the ability to reconstruct normal background at
the same time, as shown in Fig. 1. Specifically, the MemAE
method retrieves several relevant memory items for decoding
by utilizing the encoding from the encoder as a query, which
completely replaces the input features, resulting in a loss of
detail. Thus, we introduce a new module called the forgetting-
inputting-based feature fusion module (FIFFM) that combines
encoding and memory-encoding in a manner that involves

forgetting and inputting. This approach helps in repairing
abnormal foregrounds while preserving clear backgrounds.

There are two improvements in the FIFFM. At first, inspired
by LSTM [16], the way of inputting and forgetting is designed
to improve the memory mechanism. We try to erase anomalous
foregrounds in coding through a forget gate, and then use the
memory-encoded information to inpainting the erased features
through an input gate, resulting in a clear reconstruction map.
Second, to learn how to forget and input, we proposed a
two-stage training strategy. During the initial stage of training
with normal samples, the memory content is updated con-
currently with the encoder and decoder. In the second stage,
the memory contents remain fixed and are no longer updated,
and the input and forgetting abilities are learned by repairing
artificial anomalies in the artificial abnormal samples.

Recently, artificial anomalies have been widely used to
enhance the models. AFEAN [17] generates artificial anoma-
lies by combining defect-free images and random masks.
Lv et al. [18] proposed to use redundant features in natu-
ral images to simulate defects. Cutpaste [19] cuts a small
rectangular area from a normal training image and pastes
it back to an image at a random location. But as all as
we know, existing artificial anomalies are designed based
on human experience and can only simulate limited real
anomalies. Therefore, we propose a novel algorithm called
manual defect generation algorithm (MDGA) that is capable
of generating artificial anomalies that are both realistic and
feature-rich. We first assume that the features of natural
images are redundant enough to simulate almost all anomalous
features. And the blur of normal backgrounds can be regarded
as degenerate anomalies. Inspired by Cutpaste, natural images
and the blurring images of normal backgrounds as image
patches are both pasted at a random location of a large image.

Finally, in anomaly detection, the pixel gap between the
original image and the reconstructed image is still used for
defect segmentation in anomaly detection, which will cause
a lot of noise and lead to the occurrence of false detection.
Individual pixel has no semantics, normal and abnormal are
context-dependent semantic descriptions. Whether it is fil-
ters of traditional methods or convolutional neural networks,
contextual relevance is considered to be the key to image
processing. Therefore, replacing pixel gaps with feature gaps
is a more feasible approach. Since the size of the anomaly
is ambiguous, we introduced a new approach for defect
segmentation called multiple hierarchical feature difference
(MHFD).

There are two advantages in MHFD. First, the residual
between the original feature map and the reconstructed feature
map guarantees the correlation between pixels, since an ele-
ment in the feature map corresponds to pixels in one region
of the original image. Second, different feature maps have
different receptive fields, multiscale feature map residuals are
used to obtain multiscale information. In summary, our work
makes the following contributions.

1) We introduce a novel FIFFM method, which solves the
problem of poor normal background reconstruction in
MemAE [15]. A two-stage training strategy is adopted
to improve the ability to reconstruct normal background
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and the ability to repair abnormal foreground,
respectively.

2) We propose a novel MHFD method for defect segmen-
tation, which addresses the noise issues caused by pixel
gap and improves defect location accuracy.

3) We also present a novel MDGA algorithm to simulate
various defects that can occur in industrial settings.

In this article, we first discuss related works in anomaly
detection in Section II. In Section III, we introduce our pro-
posed methods: forgetting-inputting-based feature fusion and
MHFD network (FIM-Net). We provide detailed explanations
of each method and how they address existing limitations.
Section IV presents our experimental results, demonstrating
the effectiveness of FIM-Net. Finally, in Section V, we con-
clude the article.

II. RELATE WORKS

Recently, there has been increasing interest in anomaly
detection based on positive samples without labels, as the
success of deep learning model training often relies on
representative training samples and high-quality annotation.
Reconstruction-based methods, including AE [14] and variants
of generate adversarial nets (GANs) [20], have become popular
for anomaly detection.

AE-based models can learn encoded features in the latent
feature domain by training normal samples, and then recon-
struct the background images from them. During testing, the
output of anomaly samples is expected to be unknown, with
a large gap in anomaly regions. To enhance the representation
ability, many methods have paid a lot of efforts in the design of
network structure and loss function. Mei et al. [21] proposed
MSCDAE, which uses a Gaussian pyramid structure to obtain
different receptive fields to generate more realistic background
images. Yang et al. [22] proposed a fully convolutional AE
depend on multi-scale feature clustering for reconstructing
image backgrounds. However, these AE-based models only
minimize the L1 or L2 loss between the input and recon-
structed images, without considering the structural information
of the image. As a result, the reconstructed images may be
blurred. Therefore, Bergmann et al. [23] proposed a method
called AE-SSIM, which incorporates structural similarity into
an AE to inspect defects in image backgrounds. However,
neural networks have strong generalization ability, which can
result in some defects being perfectly reconstructed. And none
of the above methods have the ability to deal with abnormal
features properly. To solve this problem, MemAE [15] uses
a memory-augmented module (MAM) to improve its per-
formance by obtaining reconstruction from selected memory
contents of normal data. MemAE can repair the abnormal
samples well, amplifying reconstruction errors in abnormal
areas. Recently, many improved methods based on memory
mechanisms have been proposed, such as TrustMAE [24] and
DAAD [25]. However, from the experimental results, MemAE
and its variants repair the abnormal foreground well but blur
the normal background at the same time.

Recently, GANs [20] have been widely used in various
fields, such as style transfer [26] and image generation [27],
which shows that GANs have a strong generative ability.

Schlegl et al. [28] employed GANS in the field of defect
detection. Since the original GANs lacks the mapping from the
image domain to the latent feature domain, f-AnoGAN [29],
AAE [30], OCGAN [31], and GPND [32] are proposed. Since
then, many potential anomaly detection models base on GAN
have been proposed. GANomaly [33] proposes an encoder–
decoder–encoder framework to reduce the difference between
input and reconstructed image in both image and latent feature
spaces. Skip-GANomaly [34] improves upon GANomaly by
combining skip-connection and GANomaly to reconstruct a
more realistic image background with increased details. How-
ever, due to the introduction of the encoder-decoder networks
structure, the above GANs-based methods are also unable to
properly handle abnormal features. Therefore, Yang et al. [17]
proposed AFEAN to eliminate the effect of defect reconstruc-
tion by editing defect sample features. Niu et al. [35] pro-
posed a memory-augmented adversarial autoencoder for defect
detection, which edits the latent features through memory
mechanism and ConvLSTM [36]. In general, most of these
methods are trained only on positive samples, and localize
defects through residuals between original and reconstructed
images. However, these methods do not achieve good perfor-
mance because they exploit the pixel gap between the original
image and the reconstructed image to locate defects, resulting
in inaccurate defect localization and a large amount of noise.

III. PROPOSED FIM-NET METHODOLOGY

This section provides a detailed introduction to the proposed
FIM-Net. First, we provide a brief overview of the overall
network architecture. Then, the main modules of FIM-Net are
divided into five parts and introduced in detail, including the
latent feature repair module (LFRM) comprising MAM and
FIFFM, MDGA, the MHFD, the encoder and the decoder,
and the two-stage training strategy. Finally, the details of the
reconstruction loss and the design of the loss function are
discussed.

A. Overall Network Architecture of FIM-Net
The overall structure of the FIM-Net is shown in Fig. 2. The

proposed FIM-Net consists of five major components: MDGA,
encoder, LFRM, decoder, and MHFD.

The training phase is divided into two stages. In the first
stage, our training set contains only positive samples Ip. First,
we divide the images into kth patches (patch-size: 64 × 64)
and extract the latent features zk by encoder. Second, the latent
features zk are re-encoded by LFRM to get memorized latent
features ˆ̂zk . Finally, the ˆ̂zk is fed into decoder to get reconstruct
images Ip

′. The LFRM, encoder, and decoder are optimized
simultaneously. In the second stage, the memory of LFRM
is no longer optimized. To make the model better address
abnormal features, artificial negative samples Ian are generated
by MDGA and used as the training set. Through the forgetting
and inputting mechanism of LFRM, the abnormal foreground
is repaired, the normal background is reconstructed, and finally
the images Ian

′ is obtained.
During the testing phase, the negative samples In are

reconstructed by encoder, LFRM, and decoder to obtain the
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Fig. 2. Overall architecture of the proposed FIM-Net in the train and test stages. FIM-Net consists of a LFRM, a MHFD, an encoder, and a decoder.
During training, positive samples and artificial negative samples are propagated forward in two stages. During testing, the abnormal area of negative
samples is obtained by MHFD.

images In
′. MHFD uses multiscale information of input In and

output In
′ for more accurate anomaly segmentation.

B. Manual Defect Generation Algorithm
Due to the limitations of artificial design, artificial anomaly

samples usually can only simulate a few real anomalies.
Inspired by Cutpaste [19], we propose MDGA, which involves
cutting an image patch and randomly pasting it in a different
location of the same image, as shown in Fig. 3. First, based on
the feature redundancy of natural images relative to industrial
images, we randomly crop a 256 × 256 patch from a natural
image Ina in the ImageNet dataset [37]. Then, to more closely
simulate anomalous features, we also randomly crop the patch
from normal samples Ip and resize them to 256 × 256 before
blurring. In particular, blurring allows patches to be considered
degenerate anomalies, and resizing enables the networks to
learn not the ability to deblur, but the ability to repair anoma-
lies. Finally, these two patches are randomly pasted into the
normal samples to obtain artificial defect Ian, as follows:

Ian = paste
(
Ip, crop (Ina) , blur

(
resize

(
crop

(
Ip

))))
. (1)

The operations of random crop, resize, and blur are represented
by crop(), resize(), and blur(). paste(x1, x2, x3) represents the
operation of randomly pasting x2, x3 onto x1.

C. Encoder and Decoder
In the reconstruction task, the images are first mapped

to the feature domain using encoder and then mapped to
image space by decoder. By setting an information bottleneck,
a dimensionality-reduced data representation is obtained in the
feature space. Considering the representation ability and com-
putational cost, we design symmetric encoders and decoders,
as depicted in Table I.

Fig. 3. MDGA. The artificial negative samples are obtained by crop-
and-paste of natural images and positive samples.

In the encoder, 4 × 4 convolution kernels with a 2 × 2
strides are used for dimensionality reduction. To increase the
receptive field, the second layer of the encoder adopts 3 × 3
convolution kernels with strides of 1 × 1. Symmetric, the
decoder uses 4 × 4 deconvolution kernels with a 2 × 2 strides,
and the penultimate layer uses 3 × 3 deconvolution kernels
with strides of 1 × 1.

It is noteworthy that the proposed framework in this article
does not employ skip connections to enhance the reconstruc-
tion’s level of detail. This is because skip connections would
introduce defect features from the encoder to the decoder,
resulting in a perfect reconstruction of the defect and leading
to false detection.

D. Latent Feature Repair Module
To make the network capable of repairing abnormal fore-

ground and reconstructing normal background at the same
time, based on MemAE [15], we propose the LFRM. As shown
in Fig. 4, the LFRM includes the MAM and FIFFM. With

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 30,2023 at 06:15:45 UTC from IEEE Xplore.  Restrictions apply. 



14452 IEEE SENSORS JOURNAL, VOL. 23, NO. 13, 1 JULY 2023

TABLE I
FIM-NET ARCHITECTURE

MAM, we can get de-anomaly coding ẑk but lose details.
But at the same time, the coding zk obtained by encoder is
rich in detail. Therefore, FIFFM is proposed, which utilizes
the forget and input gates of LSTM to better fuse these
two complementary feature encodings, resulting in a feature
encoding that removes anomalies and contains texture details.
Furthermore, to elucidate the effectiveness of the proposed
method, as shown in Fig. 4, we feed the encoding obtained at
each step into the decoder to obtain the corresponding image.

1) Memory-Augmented Module: In MAM, the encoding
from the encoder is used as a query to retrieve the most
relevant memory items from the memory bank for decoding
to get de-anomaly coding, as shown in Fig. 4.

During training, the memory bank is utilized to store the
typical normal patterns, implemented as a matrix M ∈ RN×C ,
where N represents the quantity of stored memory items, and
C represents the fixed dimension. Specifically, we assign the
value of C to be the same as the dimension of the latent feature
vector zk ∈ RC , which denotes latent feature of the kth patch
in the input image. And mi

∈ RC (i ∈ {1, 2, . . . , N }) is used
to refer to the i th memory item of memory bank M . We define
the memory bank as a content addressable memory [38], [39]
with a specific addressing scheme.

The memory coding ẑk is addressed by the attention weight
wk ∈ RN , and wi

k(i ∈ {1, 2, . . . , N }) is obtained by computing
the normalized cosine similarity between kth input latent
feature zk and i th memory item mi in the memory bank,
as follows:

wi
k =

exp
(
⟨zk, mi

⟩
)∑N

j=1exp
(
⟨zk, m j ⟩

) (2)

where ⟨·, ·⟩ represents the cosine similarity. However, it is
still possible to achieve good reconstruction of certain defects

Fig. 4. Diagram of the proposed LFRM. The LFRM includes a MAM
and FIFFM. And we show the image obtained by the decoder at each
stage of encoding.

through complex linear combinations of many unrelated mem-
ory items that contain numerous small elements. Therefore,
we employ shrinkage operation. Specifically, items with atten-
tion weights less than 1/N are removed and re-normalized

ŵi
k =

max
(
wi

k −
1
N , 0

)
· wi

k

|wi
k −

1
N | + ε

(3)

where max(·, 0) is ReLU activation function, and ε is a very
small positive scalar. After the shrinkage operation, we re-
normlizaed ŵk by letting ŵi

k = (ŵi
k/∥ŵk∥). Then memory

coding ẑk is computed as follows:

ẑk = ŵk M =

N∑
i=1

ŵi
kmi . (4)

As suggested in [15], sparse loss function is leveraged to
further improve the sparsity of the attention weight ŵ

Ls =

N∑
i=1

−ŵi
k · log

(
ŵi

k

)
. (5)

This sparse loss function in (5) and the shrinkage operation in
(3) jointly improve the sparsity of the attention weights.

2) Forgetting-Inputting-Based Feature Fusion Module: The
coding zk obtained by the encoder and the de-anomaly cod-
ing ẑk addressed by MAM are complementary in feature
domain, where the former is rich in texture but with defective
information and the latter is de-anomaly but less rich in
texture. Therefore, we concatenate zk and ẑk to get [zk, ẑk].
The process of fusing coding zk and memory coding ẑk
is represented in (6)–(10). To begin with, as presented in
(6)–(7), the forget gate leverages a fully connected layer and
a softmax activation function to perform attention operations
on the concatenated features, resulting in the forget weights f ,
which are then multiplied by the original encoding zk to obtain
the feature encoding ẑ′

k with removed anomalies. However, ẑ′

k
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Fig. 5. Illustration of the two-stage training strategy of FIM-Net.
(a) Training stage 1, trained with positive samples, the encoder, decoder,
MAM, and FIFFM are updated together. (b) Training stage 2, trained with
artificial negative samples, MAM is no longer updated.

may lack texture details. Therefore, as depicted in (8)–(10),
the input gate employs two fully connected layers, a softmax
activation layer, and a tanh activation layer to obtain the
input weights i and input texture information C , respectively.
These are utilized to augment the texture details in ẑ′

k , thereby
obtaining the feature encoding ˆ̂zk with removed anomalies and
rich texture information.

Forget gate

f = σ
(
W f ·

[
zk, ẑk

]
+ b f

)
(6)

ẑ′

k = f · zk . (7)

Input gate

i = σ (Wi · [zk, z] + bc) (8)
C = tanh (Wc · [zk, z] + bc) (9)
ˆ̂zk = ẑ′

k + i · C (10)

where σ(·) denotes softmax function, tanh(·) is tanh activation
function, the fully connected layer weights are denoted as W f ,
Wi , and Wc, while the biases are b f , bi , and bc.

As depicted in Fig. 4, the reconstructed image by the coding
ẑ′

k through forget gate is less defective. On the other hand, the
reconstructed image using the coding ˆ̂zk through the input gate
presents a richer texture.

E. Two-Stage Training Strategy
As discussed above, it is difficult to make the model have the

ability to reconstruct normal background and repair abnormal
foreground at the same time in one stage of training. Therefore,
we propose a two-stage training strategy, as shown in Fig. 5.
In the first procedure, the model is optimized by training
positive samples Ip so that the MAM record prototypical
patterns of normal features. In the second procedure, the
memory bank in MAM is fixed, and the encoder, decoder, and
FIFFM are optimized by training artificial negative samples Ian
so that the FIFFM learns how to forget defective information
and input normal textured information. As shown in Fig. 5(a),
in training stage 1, considering that the model optimized with

Fig. 6. Different receptive fields of different scale. The red boxes
indicate the region of receptive field. (a)–(f) Represent the receptive
fields of the feature maps in the encoder from the first to the sixth layer.

L2-norm will produce blurry reconstructed images, L1-norm
is used as the criterion for measuring distance

L rec1 = E
Ip∼PI p

[
||Ip − Ip

′
||1

]
(11)

where || · ||1 denotes the L1-norm. To facilitate the sparsity
of the attention weights, as described in Section III-D.1, FIM-
Net is trained with the sparsity loss Ls . Therefore, the overall
model is optimized under the joint loss function

L1 = w1L rec1 + w2Ls (12)

where w1, w2 are the weights that control the relative impor-
tance of two terms. In this article, we recommend setting
w1 = 50 and w2 = 0.01.

As shown in Fig. 5(b), in training stage 2, same as training
stage 1, L1-norm is used as the criterion for measuring
distance

L rec2 = E
Ian∼PIan

[
||Ian − Ian

′
||1

]
. (13)

MAM is fixed, encoder, FIFFM, and decoder are optimized
under the following joint loss function:

L2 = w1L rec2 + w2Ls . (14)

The values of w1, w2 are same as in the training stage 1.

F. Multiple Hierarchical Feature Difference
In fact, anomalies are composite representations of multiple

pixels with contextual relationships and have significant mul-
tiscale properties. Therefore, to obtain accurate and noise-free
anomaly segmentation maps, we propose MHFD. At first,
we utilize the differences of feature maps instead of differences
of images, which guarantees the correlation between pixels.
An element in the feature map corresponds to a region in the
original image, which can be thought of as an anomaly score
for that region, as shown in Fig. 6. However, as the receptive
field expands, an element in the feature map corresponds
to a larger area of the image. When there are abnormal
areas and normal areas exist at the same time, there will
be errors whether the element is represented as normal or
abnormal. To address this trade-off, we utilize MHFD to obtain
multiscale information.

In many existing methods [10], [24], VGG is trained as a
feature extraction network on large-scale datasets, such as Ima-
geNet [37]. These networks generalize well, but do not work
for specific data. In this article, the encoder of FIM-Net can
be regarded as a feature extractor learned from self-supervised
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TABLE II
DETAILED INFORMATION ABOUT DATASETS

Fig. 7. Feature differences by the proposed MHFD. (a) Defective
images. (b)–(g) Error maps obtained by scale 1, scale 2, scale 3, scale 4,
scale 5, and scale 6.

learning on a specific dataset. As shown in Fig. 2, in MHFD,
the images In and the corresponding reconstructions In

′ are
fed to the encoder, so we can get the multiscale feature maps.
However, not all feature maps can clearly express abnormal
regions. We perform some experiments and analysis on the
selection of feature maps. As illustrated in Table I, the encoder
has a total of six convolutional layers. As depicted in Fig. 7,
the error maps of scale 4, 5, 6 have a lot of noise. In this
article, we select the feature maps of scale 1, 2, 3 to obtain
anomaly segmentation results.

Then, the feature maps subtracted and squared, upsampled
to the size of the original image, and averaged over the channel
dimension. Finally, a weighted average of feature difference
at multiple scales is performed. The images is represented by
In, In

′
∈ RC×H×W . Let φl(I ) ∈ RCl×Hl×Wl represents the

lth layer feature map. The MHFD(In, In
′) ∈ RH×W can be

described as follows:

MHFD
(
In, In

′
)

=
∑3

l=1 λlτ
(
∥φl (In) − φl

(
In

′
)
∥2

)
(15)

where τ(·) is a bilinear upsampling function that resizes the
feature tensors to H × W , ∥ · ∥2 denotes the L2 distance,
and λl denotes the corresponding weight. In terms of weight
setting, we devised a relatively scientific approach. Different
feature maps correspond to different receptive fields, and we
postulate that larger receptive fields contribute to better defect
discrimination. To this end, we denote the receptive field
size of the lth layer feature map as RFl . Accordingly, the
corresponding weight λl can be expressed as

λl =
RFl∑3

j=1 RF j
. (16)

IV. EXPERIMENTATION

A. Set Up
In this section, the effectiveness of the proposed FIM-Net

method is evaluated through several sets of experiments.

1) The overall inspection performance of FIM-Net is com-
pared with nine state-of-the-art methods on five bench-
mark textured surfaces in the MV-TAD dataset [40].

2) To further verify the generalizability of the model,
a comparative experiment on four challenging textured
surfaces in the DAGM dataset [41] is conducted.

3) The influences of each component in the FIM-Net are
explored in ablation experiments.

4) The inference speed of FIM-Net is compared with other
outstanding methods.

5) The FIM-Net is evaluated on an industrial dataset to
validate its industrial potential.

In these experiments, a variety of anomaly detection sam-
ples are used, including carpet, grid, leather, tile, wood,
wallpaper, Bcement, MAGtile, and WHcement. The carpet,
grid, leather, tile, and wood textured surfaces are sourced from
MV-TAD [40], and the wallpaper, Bcement, MAGtile, and
WHcement textured surfaces are sourced from DAGM [41].
The defect samples in the MV-TAD dataset exhibit significant
variability in terms of color, shape, and scale, making it a
highly challenging dataset. In contrast, the defect samples in
the DAGM dataset have highly intricate backgrounds, which
pose a significant challenge in distinguishing between defects
and complex textures. In our experiments, all images were
resized to 512 × 512 pixels. Additional detailed information
regarding the datasets is summarized in Table II.

To quantitatively analyze the performance of various meth-
ods, we adopt the area under the receiver operating char-
acteristic curve (AuROC) as evaluation criterion, which is
insensitive to thresholds and can better evaluate the inspection
performance of models.

All the experiments are implemented using Python 3.8.0 and
Pytorch 1.9.1 on a computer with an NVIDIA Tesla
A100 GPU, which is equipped with 40 Intel(R) Xeon(R) CPU
E5-2640 v4 at 2.40 GHz and 40 GB memory.

B. Overall Performance Comparison on MV-TAD Dataset
We compare the inspection performance of the proposed

FIM-Net method with several outstanding anomaly detec-
tion methods to verify its overall effectiveness, includ-
ing AE_SSIM [23], AnoGAN [28], f-AnoGAN [29],
MS-FCAE [22], MemAE [15], RIAD [11], TrustMAE [24],
VAE [42], ACDN [43], and AFEAN [17].
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TABLE III
AuROC RESULTS ON FIVE CATEGORIES OF TEXTURED SURFACES IN MV-TAD DATASET

Fig. 8. Inspection results for five types of textures in MV-TAD [40]. From top to bottom are the input defective images, the reconstruction images,
the error maps, and the ground truth, respectively.

Fig. 9. Inspection results for four types of textures in DAGM [41].

The experimental results of quantitative analysis are pre-
sented in Table III. FIM-Net achieves a better average result
compared to other outstanding methods. Especially for grid,
tile, and wood, compared to the second-best result, FIM-Net
improves AuROC metric by margins of 0.51%, 5.22%, and
4.06%, respectively. FIM-Net performs well on five different
samples, which shows that our method can maintain perfor-
mance on a variety of samples.

Some inspection results of FIM-Net on five different sam-
ples are shown in Fig. 8. The FIM-Net leverages MDGA and
LFRM to enable the model can simultaneously repair anoma-
lous foregrounds and reconstruct normal backgrounds, thus
obtaining clear reconstructed images. Instead of using pixel

TABLE IV
AuROC RESULTS ON FOUR CATEGORIES OF TEXTURED

SURFACES IN DAGM DATASET

difference between input and reconstructed images, FIM-Net
adopts MHFD to obtain more accurate defect segmentation
maps.

The superior results mentioned above can be attributed to
three key factors. First, the artificially generated defects by
MGDA are able to fit the real defect features in the feature
domain, thus enhancing the model’s ability to handle out-
of-distribution samples. Second, FIFFM effectively fuses two
complementary features, input coding and memory coding,
through the forget and input gates of LSTM, enabling the
model to accurately reconstruct the texture background while
repairing defects. Finally, MHFD utilizes feature differences
at multiple scales to obtain a detection map with semantic
information. In comparison to pixel differences, MHFD can
more accurately localize defects and suppress noise, thereby
contributing to the improved performance of the proposed
method.

C. Inspection Generalizability Experiment
on DAGM Dataset

To further verify the generalizability of FIM-Net, the
detection performance of FIM-Net is compared with various
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TABLE V
AVERAGE INFERENCE TIME

TABLE VI
ABLATION ANALYSIS FOR THE FIM-NET ON THE LEATHER DATASET

excellent methods, including AE-SSIM [23], CNN_Dict [44],
AnoGAN [28], OCGAN [31], MS-FCAE [22], and
AFEAN [17].

The results of our quantitative experiments are displayed
in Table IV. FIM-Net outperforms other outstanding methods
in terms of AuROC metric, which reveals that the pro-
posed method can maintain excellent performance on different
datasets, with good generalization.

Fig. 9 shows some defect inspection examples of FIM-
Net. The FIM-Net can inspect and locate defective regions
accurately on four types of textured surfaces.

D. Inference Time Comparison
A good balance between inference speed and inspection

performance is the essential point in practical industrial defect
detection. To demonstrate that FIM-Net method can achieve
the balance, the inference time of FIM-Net is compared
with that of other outstanding methods, comprising AE-
SSIM [23], f-AnoGAN [29], MemAE [15], TrustMAE [24],
and RIAD [11]. The inference time is evaluated with 512 ×

512 pixels resolution.
The quantitative experimental results regarding inference

time are shown in Table V. The inference time of FIM-Net
is 41.673 ms, ranked behind AE-SSIM, f-AnoGAN, MemAE,
and TrustMAE. However, the inspection performances of these
methods are inferior to that of FIM-Net method. RIAD method
leverages masked images at different scales to inspect defects,
leading to slow inference speed, which limits its practical
industrial applications. Accordingly, from the perspective of
the balance between inference speed and inspection perfor-
mance, the FIM-Net method is in line with industrial demands.

E. Ablation Analysis
We conducted a set of ablation experiments to determine

the impact of each module in FIM-Net. To ensure a fair
comparison, all variants of FIM-Net used the same parameter
settings. The results of the experiments are presented in
Table VI and Fig. 10.

Fig. 10. Examples of images from tests in the ablation study. The first
row shows the reconstruct images, and the second row shows the error
maps. Each column corresponds to the model variant in Table VI.

1) Influence of LFRM: LFRM is proposed to solve the
problem that MemAE [15] enhances the repair ability of
abnormal foregrounds but weakens the ability to reconstruct
normal backgrounds at the same time. To verify whether our
improvement is effective, the impact of replacing LFRM with
MAM will be analyzed in detail.

As shown in columns A and B of Fig. 10, after replac-
ing LFRM with MAM, we find that its background is not
reconstructed well, resulting in a lot of noise during defect
segmentation. Table VI presents the quantitative experimental
results. FIM-Net (column A) improves the AuROC by a
margin of 8.33% compared to the model (column B) that
replaced LFRM with MAM.

To verify that LFRM improves MAM not only due to
the increase of parameters, we design a set of comparative
experiments between FIM-Net and Cat (replacing forget and
input gates with concatenate). As shown in columns A and C
of Fig. 10, we find that the error map of LFRM is clearer than
that of Cat. Table VI shows the quantitative results. FIM-Net
(column A) improves the AuROC by 0.42% compared to the
Cat (column C).

This experiment confirms that our LFRM outperforms
MAM. LFRM can repair abnormal foreground through the
way of forgetting and inputting and can reconstruct normal
background well, helping us achieve more accurate anomaly
detection.

2) Influence of Two-Stage Training Strategy: The two-stage
training strategy aims to let LFRM learn how to forget and
input, giving the model the ability to distinguish abnormal
foreground from normal background. To confirm its effec-
tiveness, we removed the two-stage training strategy from
FIM-Net.

Columns A and D of Fig. 10 show an example of the
influence of two-stage training strategy. Without a two-stage
training strategy, LFRM cannot learn how to forget and input,
resulting in goon reconstruction of defects in the testing
phase. The quantitative experimental results are illustrated
in Table VI; compared with model without the two-stage
training strategy (column D), FIM-Net (column A) improves
the AuROC by a margin of 0.89%.

The experiment confirms that our two-stage training strategy
is effective. The two-stage training strategy can make the
model have the ability to distinguish abnormal foregrounds
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Fig. 11. Automated optical inspection equipment for commutator
surface defect detection.

from normal backgrounds, which helps the model to better
repair abnormal foregrounds.

3) Influence of MHFD: The purpose of MHFD is to accu-
rately segment defects and suppress noise by leveraging
feature difference at multiscales. To verify the effectiveness,
we removed the entire MHFD from FIM-Net.

Column A and E of Fig. 10 show an example of the influ-
ence of MHFD. Instead of using MHFD, the model (column
E) utilizes the pixel difference between input defective and
its reconstruction, resulting in inaccurate defect segmentation
and a lot of noise. By leveraging MHFD, noise can be effec-
tively suppressed and defect segmentation in more accurate.
Table VI presents the quantitative experimental results. FIM-
Net (column A) improves the AuROC by 0.71% compared to
the model without MHFD (column E).

This experiment confirms that our proposed MHFD is
indeed effective. By exploiting MHFD no longer focus on
small gap between pixels, but on anomaly scores in regions
of different sizes. This helps us achieve more accurate defect
segmentation and suppress noise.

F. Industrial Application
To validate the potential of FIM-Net in the industrial field,

as shown in Fig. 11, it is implemented in our automated optical
inspection equipment to inspect commutator surface defects
online, which comprises the camera, light source, commutator,
etc. A commutator dataset comprising 443 defect-free images
and 66 defective images was collected, of which 336 nominal
samples are leveraged for training and 97 nominal samples
and 66 anomalous samples are utilized for testing.

Some examples of the defect segmentation results obtained
using the FIM-Net method are shown in Fig. 12. The pro-
posed FIM-Net is capable of inspecting and locating various
defects accurately, which reveals its potential in the particular
application.

Fig. 12. Examples of commutator surface defect segmentation results
of proposed FIM-Net. From top to bottom are the input defective images,
the error maps, and the ground truth, respectively.

V. CONCLUSION

In this article, we proposed an unsupervised learning method
FIM-Net for surface defect detection. This method is only
trained on positive samples and artificial negative samples
without any real negative samples. It is very important for the
initial stage of the industrial production lines where negative
samples are extremely scarce.

Academically, we divide the key points of
reconstruction-based anomaly detection methods into
anomaly foreground repair ability and normal background
reconstruction ability. A novel LFRM module and a new
method of two-stage training strategy are proposed to obtain
the two abilities. Furthermore, MHFD is proposed for more
accurate and reasonable defect segmentation. We observed
that MHFD outperforms the traditional method based on
pixel gaps between original image and reconstructed image.
Because MHFD uses encoders as feature extractors, it is
suitable for all the AE-based or GAN-based methods.
Extensive experimental results on several typical anomaly
detection datasets show that our method FIM-Net achieves
the state-of-the-art detection accuracy.

However, it should be noted that the patch-level reconstruc-
tion technique employed in the proposed method may result
in a decreased inference speed of the network. Additionally,
the approach exhibits limitations in its scope of application,
as it is exclusively effective in detecting texture defects and
falls short of delivering satisfactory performance in detecting
component defects such as screws and transistors. In future
work, our focus will be on optimizing the model’s inference
speed without compromising its performance and investigating
alternative approaches to expand the range of applications of
our method to include component defect detection.
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