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Abstract—In industrial quality inspection, large amounts of 
data on the desired product appearance are available at the time 
of training, while significantly few defective samples are available. 
In this study, we proposed a new Memory-augmented Adversarial 
Autoencoders to detect and localize defects in real-time using de-
fect-free samples alone for model training. This research was con-
ducted by reconstructing images using an adversarial autoencoder 
and detection results from the Fréchet Markov Distance. A thresh-
old was determined based on the statistical characteristics of de-
fect-free samples in training set. Innovatively, we introduced a 
memory module and redesigned the reconstruction loss function 
to avoid the situation where the reconstruction ability is too strong 
or too poor, which lead to missing detection of defects. Then we 
proposed Fréchet Markov Distance, which can accurately meas-
ure the distance between the distribution of test samples and posi-
tive samples. Moreover, the statistics-based threshold determina-
tion method is used to meet different industrial needs. The accu-
racy, robustness, and computational overhead of the proposed 
MAA were evaluated using three datasets obtained from the pro-
duction line and two benchmark datasets. The results indicated the 
effectiveness and ability of the proposed method to adapt to the 
real-time nature of industrial production.  
 

Index Terms— automatic optical inspection, Fréchet Markov 
distance, memory-augmented adversarial autoencoders, surface 
defect detection 

I. INTRODUCTION 
EFECT inspection is the main method to achieve quality 
management in the industrial production process. It can 
not only identify substandard products in time, but also 

improve the production process and increase production effi-
ciency according to the test results. The existing detection 
methods are mainly through manual detection, relying on hu-
man detection experience and subjective judgment, resulting in 
low detection efficiency, high false-positive rate and high false-
negative rate. The handcrafted feature representation-base ap-
proaches rely on manual extraction of features and setting 
thresholds. Consequently, features extraction capability is lim-
ited and the robustness is poor. Moreover, the approaches are 
expensive to maintain and unable to detect the defects that have 
not occurred in the production process.  

In recent years, deep learning has made breakthroughs in the 
field of image processing. Meanwhile, convolutional neural 
networks (CNNs) possess excellent feature extraction abilities. 
In addition, they have achieved the most advanced effects on 
tasks, such as image classification, object detection, and seman-
tic segmentation. However, CNNs may be classified as super-
vised learning methods, and thus require large amounts of la-
beled data, which is difficult to obtain in the industrial field.  

The biggest challenge of deep learning in the field of indus-
trial quality inspection is the data collection [1]. First, the over-
all distribution of samples presents extremely unbalanced char-
acteristics, and the number of defect-free samples is 

considerably larger than that of defective samples. Therefore, 
obtaining a sufficient number of defective samples with com-
plete features is the biggest challenge. Second, the ability of a 
supervised learning model depends on the quality of labels. To 
obtain high-quality labels, labelers with an engineering back-
ground need to be employed, which is a time-consuming and 
high-labor-cost process. Finally, the possibility of precise de-
tection of the edge scenes that are not covered by the training 
data, such as the samples that have not appeared in the previous 
production processes, is another problem. 

The existing defect detection methods mainly include the fol-
lowing three methods.  

1) An image is cut into patches using sliding windows. Sub-
sequently, the patches are classified based on various CNNs, 
such as Resnet, and Googlenet [2][3]. These methods exhibit 
excellent feature extraction capabilities, robustness, and accu-
racy; however, they require a sufficient number of defective 
samples with complete features.  

2) Locating and outlining defects according to advanced se-
mantic tasks, such as U-net, Yolo, and faster-RCNN [4][5]. 
These methods can obtain detailed information regarding the 
defects; however, they require high quality labels with pixel-
level segmentation.  

3) Training on the defect-free data, the module is expected to 
produce a larger number of reconstruction errors for the defec-
tive inputs than that for the defect-free ones, which is recog-
nized as a criterion for defect detection [6][7][8]. These meth-
ods can not only meet the requirements of industrial inspection 
for positive/negative classifications but also avoid the data col-
lection problems. Because only positive samples are required 
for training, no defective samples are needed, labeling cost is 
low, and unknown defects can be detected. 

The positive-sample-based methods mainly focus on the fol-
lowing three defect detection aspects: constructing an improved 
positive sample distribution model; defining an reconstruction 
error to measure the distance between the test sample and dis-
tribution model of the positive samples; and determining the 
threshold.  

As for the first aspect, the existing methods typically estab-
lish a positive sample distribution model through various pre-
text tasks, such as generation, reconstruction, and denoising. To 
the best of our knowledge, generative adversarial networks 
(GANs) and deep autoencoder (DAE) are two positive-sample-
based methods, which have been successfully applied to surface 
defect detection; however, they have some limitations.  

DAE [6] is a method based on reconstruction. The structure 
of a DAE can be divided into an encoder and a decoder. As 
depicted in Fig. 1 (a), the encoder down-samples the input to 
the latent space, and the decoder up-samples the latent space 
coding to obtain the output. By using the L1 or L2 norm as the 
loss function, the input and output are as close as possible. The 
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basic principle of the autoencoder is to set the information bot-
tleneck to filter information noise, such as defect information. 
When the information bottleneck is excessively small, the qual-
ity of the defect-free samples and defective sample reconstruc-
tion can easily deteriorate. In contrast, when the information 
bottleneck is significantly large or skip connections are intro-
duced, both the defect-free samples and defective samples are 
reconstructed satisfactorily. A reconstruction ability that is ex-
cessively high or low may lead to missed detection of defective 
samples. We believe that the implementation of DAE may not 
be smooth owing to the lack of a sufficient number of defective 
training samples; hence, the reconstruction results are unpre-
dictable. If some features of the defective share common latent 
coding with the defect-frees, the decoder will be too “strong” to 
decode defective coding as well. Furthermore, the loss function 
is designed to make the input equal to the output, which leads 
reconstruction ability is excessively high.  This observation (Fig. 
11 (d) (f)) has already been reported in the literature [9][10].  

GANs [7] [31] can generate positive samples through the mu-
tual game learning of the generative model and discriminant 
model during training, as depicted in Fig. 1 (b). When the ad-
versarial training is completed, the generator learns the map-
ping from the latent space coding to the realistic (defect-free) 
images. However, GANs do not automatically yield the inverse 
mapping for free.  Therefore, the existing methods iteratively 
calculate during testing to make the input samples and gener-
ated sample as close as possible, as depicted in Fig. 1 (c). How-
ever, these methods take 47 s to detect a single sample, as pre-
sented in Table Ⅳ, which is unacceptable in industrial scenarios. 
An improved method [8][33] train the generator and encoder 
separately, freezes the trained generator parameters, and uses 
the structure depicted in Fig. 1 (d) to update the encoder param-
eters. This method increases the test efficiency; however, be-
cause the encoder and generator are trained separately, it is easy 
to fall into the local optimum[10]. 

To address these challenges, we proposed a memory-aug-
mented adversarial autoencoders (MAA). We made the follow-
ing two improvements in the MAA. First, we introduced a 
memory module between the encoder and decoder. Given an 
input, the MAA does not directly feed its encoding into the de-
coder but uses it as a query to retrieve items in the memory. 
Second, we redesigned the reconstruction loss function by com-
bining feature loss with adversarial loss. Thus, the input and 
output were no longer directly equal, although their features 
were the same. In addition, to improve the quality of the recon-
structed image, an adversarial loss is introduced and coordi-
nated training.  

With regard to the second aspect, existing methods typically 
consider the value of the loss function as the anomaly score. 
The anomaly score of DAE is the L1 or L2 norm of the input 

and output, which is easily affected by image noise. In addition, 
geometric related research [11] on deep learning has proved that 
the distribution of images is manifold, and Euclidean distance 
has certain limitations. The anomaly scores of GANs often refer 
to the results of the discriminator [12] [36]. However, the dis-
criminator is used to indicate whether a sample is real or fake, 
rather than positive or negative. Furthermore, the convergence 
result of GAN is to reach the Nash equilibrium [19], where the 
accuracy of the discriminator is approximately 50%.  

Inspired by the Fréchet Inception Distance [13], we proposed 
the Fréchet Markov Distance (FMD). We first established a 
Markov random field model between the images and feature 
matrices, which was used to extract and characterize the local 
features of an image. The background of the image in defect 
detection task is complex and the area ratio is often large. In 
addition, the defects are often sparse and generally appear as 
local features. Determining whether there is a defect in a certain 
part of the image can be assumed to be related to the neighbor-
ing pixels alone. The patch of the image was considered as the 
site, and the probability of being determined as a defect was 
considered as the value of the phase space. The value of the 
phase space was only related to the neighboring sites. Subse-
quently, the Fréchet Distance (FD) [14] was used as measure 
between two multivariate normal distributions in the feature 
space. To consider global and local features simultaneously, we 
only considered the mean and covariance of the feature matrix. 
The Gaussian is the maximum entropy distribution for a given 
mean and covariance. Therefore, we assumed that the feature 
matrix followed a multidimensional Gaussian. The difference 
between the two Gaussians was measured using the Fréchet dis-
tance. 

Finally, the threshold is a critical parameter in distinguishing 
between the defective and defect-free samples. A commonly 
used method is to establish a verification set and determine the 
threshold based on the test results of the verification set. How-
ever, the overall distribution of the samples presents extremely 
unbalanced characteristics. In addition, the number of negative 
samples in the verification set is limited, ultimately leading to 
poor robustness of the threshold. 

Based on the positive samples in the training set, we estab-
lished a statistical model to determine the threshold. In indus-
trial production, there is almost always a significant amount of 
defect-free data while defective data are relatively small negli-
gible (1-5% for the worst modern automated production lines). 
As the amount of data used increases, the threshold generaliza-
tion performance improves. Furthermore, qualified production 
lines generally have a better process capability index (CPK), 
which implies that the training set has a satisfactory consistency. 
Therefore, it is reasonable to assume that the number of samples 
is sufficient and only random errors exist. According to the 

 
Fig. 1.  Model structure of existing methods. (a) is the deep autoencoder, (b) is the training part of the generated adversarial networks, (c) is the testing part of the 
generated adversarial networks, (d) is the improved testing part of the generative adversarial networks. 
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Pauta criterion, we established a statistical model of reconstruc-
tion error in defect-free samples. Finally, how to selected ap-
propriate parameters to meet the needs of different scenarios is 
discussed.  

The schematic illustration of the proposed method is shown 
in Fig. 2, which randomly dividing a training set with only de-
fect-free samples into set A and set B. During training, the net-
works reconstruct the samples in set A into the samples in set B 
using MAA. Then, the reconstruction error of the defect-free 
samples in the training set is obtained by calculating FMD, and 
a statistical model is established to determine the threshold. 
During testing, given a defective input, MAA can transform the 
defective samples into defect-free samples in the memory mod-
ule for reconstruction, resulting in an output significantly dif-
ferent from the defective input. Subsequently, MAA calculates 
the FMD between the input and output to obtain the reconstruc-
tion errors, and determine whether it conforms to the statistical 
distribution according to the threshold. 

We compared seven of the most advanced methods (includ-
ing Cognex software VIDI [42] and six state-of-art methods) 
using five datasets (three sets are from industrial sites and two 
sets are benchmark datasets).  

In summary, we proposed a new Memory-augmented Adver-
sarial Autoencoders to detect and localize defects for real-time 
with only defect-free samples for model training. The contribu-
tions of this paper are as following. 

1) An MAA was proposed to avoid the situation where the 
reconstruction ability is too strong or too poor, which 
lead to missing detection of defects. We introduced an 
automatic memory mechanism between the encoder and 
decoder, and redesigned the reconstruction loss by com-
bining feature loss and adversarial loss. 

2) FMD was proposed to calculate the reconstruction error 
accurately. A Markov random field was established be-
tween the image and the feature matrix to obtain the lo-
cal features of the image. Subsequently, the Fréchet dis-
tance was used as a measure between the two feature 
matrices of the input and output. 

3) A statistic-based method for determining thresholds was 
proposed to adopt the actual needs of the industry. And 
we discussed how to select hyperparameters. 

The remaining part of this paper is organized as follows. The 
studies related to this work are discussed in Section Ⅱ. Then, in 
section Ⅲ, we will describe the procedures of the proposed 
MAA model in detail. Then in order to analyze the model and 
compare the overall performance, experimental results are pre-
sented in section Ⅳ. Finally, we will make a conclusion of the 
paper in section Ⅴ.  

II. RELATED WORKS 
Our proposed method is an anomaly detection method, which 

attempts to obtain the identification of the defective class 
among all objects by primarily learning from a training set con-
taining only the objects of the defect-free class. DAE, GANs, 
Markov random field, and memory networks were applied to 
the proposed MAA model. This section briefly reviews the de-
velopment of DAE, GANs, and memory networks. Then, latest 
research on the anomaly detection method is discussed.  

A. Development of DAE, GANs, and Memory Networks 
DAE [15] is proposed as a type of neural network structure, 

which includes an encoder and a decoder. An autoencoder is 
used to learn a representation (encoding) in an unsupervised 
manner for a set of data. Typically, an autoencoder is used for 
dimensionality reduction, by training the network to ignore sig-
nal “noise”. To achieve better representation, a spare autoen-
coder [16] constrains the sparsity of hidden units and a de-
noising autoencoder [17] changes the reconstruction criterion. 
Unlike classical autoencoders (spare, denoising, etc.), varia-
tional autoencoders are considered as generative models and 
use a variational approach for latent representation learning 
[18]. 

GANs are generative models invented by Goodfellow in 
2014 [19]. The concept of the zero-sum game was introduced, 
where in a generator generates an image and a discriminator de-
termines whether the generated image is real or fake. The gen-
erator resembles a decoder-like network that learns the distri-
bution of the input data from a latent space. The discriminator 
network typically possesses a classical classification architec-
ture, which implies that it can determine the validity after read-
ing an input image. GANs have attracted widespread attention 
owing to their potential practical applications in the future. 
Deep convolutional GAN (DCGAN) was proposed by Radford 
[20], who introduced a fully convolutional generative network 
by removing the fully connected layers, and introducing convo-
lutional layers and batch-normalization in the network. GANs 
with inference have been also used within image style transfer. 
For instance, this research [21] presents an approach for trans-
lating an image from domain to domain in the absence of paired 
examples.  

Memory-augmented networks were first proposed by Google 
Brain in 2014 [22]. They used external memory to extend the 
capability of neural networks, in which content-based attention 
was used for addressing the memory. These networks are anal-
ogous to a Turing Machine or Von Neumann architecture; how-
ever, they are differentiable end-to-end, allowing them to be ef-
ficiently trained with gradient decent. The main idea to combine 
the successful learning strategies developed in the machine 
learning literature for inference with a memory component that 
can be read and written to, was proposed by Facebook AI Re-
search [23]. Furthermore, memory-augmented networks have 
attracted significant interest for solving various problems, such 
as one-shot learning [24] and multi-modal data generation [25], 
[26]. 

B. Latest Research of Anomaly Detection Method 
Anomaly detection is the identification of rare items, events, 

or observations, which raises suspicions by differing signifi-
cantly from the majority of the data[27]. It exactly fits the char-
acteristics of industrial images. Defective images correspond to 
rare items, events, or observations, while defect-free images 

 
Fig. 2.  Defect detection via the proposed MAA.  
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correspond to the majority of the data. Therefore, defect detec-
tion is the identification of a defective image from defect-free 
images. 

In unsupervised anomaly detection, only normal samples can 
be used as the training set. Consequently, a natural choice to 
solve this problem would be a one-class classification method, 
such as the one-class support vector machine (OC-SVM) [28]. 
The objective of OC-SVM is to determine a maximum margin 
hyperplane in a feature space, which best separates the mapped 
data from the origin. Support vector data description (SVDD) 
[29] is a technique to identify the smallest hypersphere that en-
closes the majority of the data in a feature space. These methods 
often perform poorly when processing high-dimensional data, 
such as images. 

The main approach use in anomaly detection is the use of a 
DAE based on the assumption that a model trained by defect-
free data alone cannot correctly represent and reconstruct de-
fects. For example, deep structured energy-based models 
(DSEBMs) [30] were proposed to address the anomaly detec-
tion problem by directly modeling the data distribution with 
deep architectures. Deep autoencoding Gaussian mixture mod-
els (DAGMMs) [10] utilize a DAE to generate a low-dimen-
sional representation and reconstruction error for each input 
data point, which is further fed into a Gaussian mixture model. 
Although the reconstruction-based methods have achieved 
fruitful results, their performances are limited by the under-de-
signed representation of the latent space. 

Because of the successful application of GANs in modeling 
such complex and high-dimensional distributions, increasing 
number of researchers have attempted to implement anomaly 
detection using GAN-based methods. AnoGAN [31] was the 
first GAN-based anomaly detection method proposed for cap-
turing imaging markers relevant to disease progression and 
treatment monitoring. Later, Efficient-GAN [32] and f-
AnoGAN [33] were proposed to enable AnoGAN to run faster 
at test time. Furthermore, GANomaly [34] not only minimizes 
the distance of input and reconstructs like other methods but 
also constrains the latent vectors, resulting in improved perfor-
mance. Moreover, CVAE-GAN [35] regularizes the latent 
space by fitting multiple Gaussian distributions and performing 
active negative training. ALOCC [36] changes the training 
strategy to focus on denoising, rather than reconstruction. They 
think that the separability of the enhanced inliers and distorted 
outliers by denoising is considerably better than deciding on the 
original samples. Although the GAN-based anomaly detection 
method is successful, our specific application in the field of 

defect detection requires corresponding improvements based on 
the image characteristics. 

III. PROPOSED APPROACH 

A. Overview of Proposed MAA 
The proposed MAA model comprises five major components 

– a generator (for achieving reconstruction), a discriminator (for 
obtaining high quality reconstruction samples), FMD (for ob-
taining accuracy reconstruction error), hypothesis testing (for 
obtaining the threshold with training samples), and extraction 
(for localizing defects). As depicted in Fig. 3, during training, 
the encoder first obtains the encoding of the input. Subse-
quently, deeper features of the encoding are extracted through 
the first Resnet blocks. By utilizing ConvLSTM [37], the 
memory preserves historic information and learns the group 
characteristics of the defect-free samples. Then, the second 
Resnet block and decoder obtains the memory-coding. After 
obtaining the reconstruction of the input, both the reconstruc-
tion and input are introduced in the discriminator network to-
gether. On the one hand, the Markov encoder is responsible for 
dealing with the feature loss, where it is minimized. On the 
other hand, the adversarial loss is optimized in the GANs dis-
criminator. Given a testing sample, the generator transforms it 
into a defect-free sample. As a result, the reconstruction tends 
to be close to a defect-free sample, resulting in small recon-
struction errors in defect-free samples and large reconstruction 
errors in defective samples, which serves as the criterion for de-
fect detection. 

Subsequently, the reconstruction errors are calculated using 
FMD. A Markov random field is established between the image 
and feature matrix to obtain the local features of the image. 
Then, Fréchet distance [14] is used as a measure between two 
multivariate normal distributions in the feature space.  

Furthermore, a statistical model of the reconstruction errors 
of the training set samples is established based on the Pauta cri-
terion. The parameters are set by considering the highest defec-
tive samples recall rate as the target, and the threshold is calcu-
lated. 

Finally, to identify the type of defect and improve the pro-
duction process, further information is often required. There-
fore, we compare the input with the reconstruction to locate the 
defect. 

B. Generator Networks 
We introduced an automatic memory mechanism in the au-

toencoder and redesigned the loss function and training strategy. 

 
Fig. 3.  Overview of the proposed structure for Memory-augmented Adversarial Autoencoders. 
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The generative network is made up of the encoder, decoder, 
memory module and Resnet block.  
1) Encoder and Decoder 

The encoder is used to represent the input in an informative 
latent domain. In our model, the encoded representation is re-
coded by the memory module and used as an input to the de-
coder. The decoder is trained to reconstruct the samples using 
the memory-coding. 

We designed the encoder and decoder to be symmetrical. In 
the first layer of convolution of the encoder, a large convolution 
kernel is used for a large receptive field. A large amount of in-
formation leads to better, characteristics; however, a larger 
number of parameters are also required. Therefore, we refer to 
inceptionV3 [38], using a 1×7 convolution kernel and a 7×1 
convolution kernel to reduce the number of parameters required 
and improve the accuracy. Dimension reduction uses 3×3 con-
volution kernels. Similarly, the decoder uses 3×3 convolution 
kernels and the last layer uses a large convolution kernel similar 
to the encoder.  
2) Memory Module 

We introduced the concept of a memory module. By using 
the encoded representation as a query, the memory-coding is 
obtained through the secondary encoding of the memory mod-
ule, which is then input to the decoder. The proposed memory 
module consists of two major components: a memory for stor-
ing the training set sample features, and a ConvLSTM for writ-
ing and reading the memory according to a certain mechanism. 

Practically, the characteristics of defect-free samples are 
group-specific, context-sensitive, and relatively single, and 
their appearances are basically the same. Conversely, the de-
fects of defective samples show various features. In an actual 
production process, factors, such as tool wear and environmen-
tal changes, may cause context-related changes in a sample. 
Therefore, we adopted the method of RNN and designed our 
memory module with reference to ConvLSTM. As depicted in 
Fig. 4, the memory module contains a hidden-state (short-term 
memory), cell-state (long-term memory), forget gate, input gate, 
output gate, and convolutional layer. The model is represented 
in equations (1)-(6). In the writing phase, the input gate pro-
cesses the current encoding (as shown in (1)) and updates it to 
the next cell-state with a certain probability (as shown in (2)). 
The forget gate forgets the current cell-state with a certain prob-
ability (as shown in (3)). It then obtains a new cell-state (as 
shown in (4)). In the reading phase, the current hidden-state and 
input code gains the next hidden-state (as shown in (5), (6)). 
The memory-coding and next hidden-state share the same value. 

Input gate: input hidden feature information.  tC  is the input 
hidden feature information. ti  is the probability of controlling 
whether to input the hidden feature information. 

1tanh( [ , ] )t C t t CC W h z b−= ⋅ +                                  (1) 

1( [ , ]) )t i t t ii W h z bσ −= ⋅ +                                          (2) 

Forget gate: tf  is the probability of forgetting the existing 
memory cell-state. 

1( [ , ]) )t f t t ff W h z bσ −= ⋅ +                                       (3) 

Memory cell status update: the forget gate and input gate 
work together to update the state of memory cells. 

1t t t t tC f c i C−= × + ×                                                (4) 

Output gate: output the next state. to  is the probability of 
controlling whether to output the current memory cell state. th  
is the output. 

1( [ , ] )t o t t oo W h z bσ −= +                                         (5) 

tanh( )t t th o C= ×                                                   (6) 

In equations (1)-(6), the coding obtained by the encoder is 
represented by ,...,i tz z , memory-coding is represented by

 
Fig. 4.  Memory Block Architecture. See table I for specific parameters. 

TABLE I 
MEMORY-AUGMENTED ADVERSARIAL AUTOENCODERS ARCHITECTURE 

Oper-
ation 

Ker-
nel 

Strid
es 

Pad-
ding 

Features 
Maps/Units 

B
N? Non-Linearity 

Encoder                                                                 Input:x=[B,3,256,256] 
Conv 1×7 1×1 0×3 3,16 √ ReLU 
Conv 7×1 1×1 3×0 16,32   
Conv 3×3 2×2 1 32,64 √ ReLU 
Conv 3×3 2×2 1 64,128 √ ReLU 
Conv 3×3 2×2 1 128,256 √ ReLU 

Resnetblock1, Resnetblock2, Resnetblock3 
Auto-Memory Input:x=[B,256,32,32],h=[B,256,32,32],c=[B,256,32,32] 
Conv 3×3 1×1 1 512,1024 × Linear 
Split    1024,4×256 × Linear 

Resnetblock4, Resnetblock5, Resnetblock6 
Decoder                                                                  Input:x=[B,256,32,32] 
T.cv 3×3 2×2 1 256,128 √ ReLU 
T.cv 3×3 2×2 1 128,64 √ ReLU 
T.cv 3×3 2×2 1 64,32 √ ReLU 
Conv 7×1 1×1 3×0 32,16   
Conv 1×7 1×1 0×3 16,3 √ Tanh 
Discriminator                                                        Input:x=[B,3,256,256] 
Conv 4×4 2×2 1 3,64 × LeakyReLU 
Conv 4×4 2×2 1 64,128 √ LeakyReLU 
Conv 4×4 2×2 1 128,256 √ LeakyReLU 
Conv 4×4 1×1 1 256,512 √ LeakyReLU 
Conv 4×4 1×1 1 512,1 × Linear 
Conv 4×4 1×1 1 1,1 × Linear 
Others: 

Optimizer Adam(α=10e-5, β=0.5) 
Batch Size(B) 32 

Latent Dimension 64×64 
LeakyReLU Slope 0.1 

Weight & Bias initializa-
tion Isotropic Gaussian(μ=0,σ=0.02),constant(0) 

[Conv] Convolution, [T.cv] Transposed Convolution, [x] Input Tensor, 
[BN] Batch Normalization, [h] Hidden-state, [c] Cell-state, [B] Batch size 
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,...,i tz z′ ′ , cell-state is represented by ,...,i tC C , and hidden-

state is represented by ,...,i th h . Furthermore, the gates ti  , tf , 

and to  are all 3D tensors, σ  is the sigmoid function, tanh  is 

the tanh function. In addition, cW , iW , fW , and oW  are 2D con-
volution kernels. The architecture is illustrated in Fig. 3 with its 
composition further elaborated in Table I.  
3) Resnet Block 

We added the Resnet block between the encoder, decoder 
and memory module. To the best of our knowledge, the depth 
of the feature representation is critical in visual recognition 
tasks and Resnet can increase the network depth and avoid deg-
radation problems. 

C. Discriminator Networks 
The discriminator is used for the generator to form a GAN 

[11]. By reaching the Nash equilibrium through the zero-sum 
game, the reconstructed samples of the generator are close to 
the real samples. The design of the network structure is depicted 
in Table I. 

D. FMD 
The FMD includes a Markov encoder sharing weights with 

the discriminator and FD. The design of the Markov encoder is 
illustrated in Fig. 5. The input is represented by x , and the local 
feature matrix is represented by ( )f x . The red sliding window 
splits the input into a patch of size N N× , which is represented 
by ,...,ij nmP P , and the value of the corresponding feature matrix 
is represented by ,...,ij nmd d . Furthermore, ijP  is the position, 
and ijd  is the phase space. The value for each position of an im-
age is given assigned in a phase space according to the CNN 
map. The value of each position is related to the pixels alone. 

After obtaining the feature matrix, where ( )if x  represents 
the feature matrix of input and ( )rf x  represents the feature ma-
trix of reconstruction, we employed FD to calculate reconstruc-
tion error, as follows: 

2 1/2( 2( ) )i r i r i rFMD Trµ µ= − + Σ + Σ − Σ Σ          (7) 
where iµ , rµ  and iΣ , rΣ  are the respective means and covari-
ance matrices of ( )if x  and ( )rf x , and the positive square root 
is taken. The above formula holds in particular when ( )if x  
and ( )rf x  are normal distributions on R n [14]. 

E. Training Mechanism 
First, the samples are resized to 256 256×  pixels and the 

pixel values are normalized by scaling between 0 and 1. Subse-
quently, the samples are classified into defective and defect-free 
samples, and seven out of ten of the defect-free samples are 
considered as the training set.  The remaining samples are used 
as the testing set. Finally, we randomly divide the training set 
into training set A and training set B. 

As shown in Algorithm 1, samples of the training set A are 
represented by ax , and samples of the training set B are repre-
sented by bx  . We input sample ax  into the generator to obtain 
reconstructed samples ( )aG x . Then, samples bx  and ( )aG x  
are input into the Markov encoder to acquire ( )bf x and 

( )( )af G x , and input into the GAN discriminator to obtain 
( )bD x  and ( )( )aD G x .  
Initially, we propose a local feature consistency loss as fol-

lows: 

  ( ) ( )( )
1con b aL f x f G x= −                                  (8) 

In comparison with the original loss function, there are two 
advantages.  

1) The local features extracted by the Markov encoder, are 
used in our model, whereas other autoencoders typically deter-
mine the reconstruction error through direct pixel subtraction. 

2) Instead of minimizing the reconstruction loss of the input 
and reconstruction, we minimize the reconstruction loss of a 
sample in B and that of a sample in A. Because A and B are 
both defect-free samples, the local features can be considered 
to be identical.   

To make the reconstructed samples as realistic as possible 
and establish an improved generation model of defect-free sam-
ples, we refer to the most advanced generation model, GAN, 
and design the following loss function: 

 
Fig. 5.  Diagram of the Markov discriminator. See table I for specific parame-
ters. 

Algorithm 1: Minibatch stochastic gradient descent training of memory-aug-
mented adversarial autoencoders. The number of steps to apply to the dis-
criminator, k is a hyperparameter. We used k = 1, the least expensive option, 
in our experiments. 
For number of training iterations do 

For k steps do  
Sample minibatch of m  samples (1) ( ){ ,..., }m

a ax x  from data of train 

set A distribution ( )data Ap x  . 

Sample minibatch of m  samples (1) ( ){ ,..., }m

b bx x   from data of train 

set B distribution ( )data Bp x  .  
                Update the discriminator by ascending its stochastic gradient: 

[ ]( ) ( )

1

1 log ( ) log(1 ( ( )))
d

m
i i

b a
i

D x D G x
mθ

=

∇ + −∑  

End for 
Sample minibatch of m  samples (1) ( ){ ,..., }m

a ax x  from data of train 

set A distribution ( )data Ap x  . 
        Update the generator by ascending its stochastic gradient: 

       
( ) ( ) ( )

1
1

1 log(1 ( ( ))) ( ) ( ( ))
g

m
i i i

a b a
i

D G x f x f G x
mθ

=

∇  − + −  ∑  

End for 
The gradient-based updates can use any standard gradient-based learning rule 
[39]. We used momentum in our experiments. 

 

Authorized licensed use limited to: Huazhong University of Science and Technology. Downloaded on June 01,2021 at 13:42:04 UTC from IEEE Xplore.  Restrictions apply. 



1083-4435 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2021.3058147, IEEE/ASME
Transactions on Mechatronics

[ ] [ ]
~ ~

log ( ) log(1 ( ( ))
x x

adv b ax p x p
L D x D G x= Ε + Ε −    (9) 

We obtain the final loss function: 

 con advL L Lλ= +                                                    (10) 

where 0λ＞  is a trade-off hyper parameter that controls the 
relative importance of the two terms. 

F. Threshold Determines by Statistical Model  
To establish a statistical model of positive samples, we make 

the following three assumptions. First, because the training set 
and test set are randomly divided, it can assumed that their sam-
ples have identical distribution. Second, there are significantly 
more defect-free samples than defective samples. Thus, it can 
be assumed that there are sufficient number of samples in the 
training set. Third, an acceptable process capability coefficient 
corresponds to an acceptable consistency. Therefore, it can be 
assumed that there exist random errors between the reconstruc-
tion errors of the training set. The first hypothesis guarantees 
that the training set can be used to predict the test set. If the 
latter two assumptions are true, the reconstruction error of the 
training set samples conforms to the normal distribution. Ac-
cording to the Pauta criterion, we build the following model. 

We Assume that ( ){ }= | 1,2,...,kx k Nξ ϑ =  refers to the re-
construction residual set of images of defect-free samples in the 
training set, where N is the number of the samples, and ( )xϑ   
is the reconstruction error of x . The threshold can be defined 
as T µ γ σ= + ⋅ , where µ , σ  are the mean and standard devi-
ation of setξ . The parameter γ  can be adjusted according to the 
discriminate sensitivity. We consider one of the data sets as an 
example, as depicted in Fig. 6. In the normal test, the signifi-
cance value is 0.171, which is greater than 0.05. Apparently, it 
obeys the normal distribution. At 95% confidence level, the up-
per limit of the mean is 0.094, and the standard deviation is 
0.033. When 2γ = , the recall rate of the defect-free samples is 
100%, and when 0γ = , the recall rate of the defective samples 
is 100%. In the case of an industrial defect detection, the recall 
rate of defective data is required to be high, therefore, 0γ = . 

G. Extraction Location InformationBy inputting a sample, 
we can obtain the corresponding defect-free sample, deter-
mine the local variance of the residual map, and obtain the 
defect location. The process can be divided into the following 

three steps, as depicted in Fig. 7.  
First, the reconstruction and input are directly subtracted to 

obtain the subtraction.  
Second, because the texture, color, gray and other features of 

the normal area are reconstructed well, the characteristics of the 
normal area in the subtraction are balanced and uniform, 
whereas the characteristics of the abnormal area are unbalanced 
and non-uniform. The local variance of the subtraction is salved, 
it can be found that the abnormal area has been clearly distin-
guished.  

Finally, to enhance the display effect, we obtain the location 
through image self-multiplication and the threshold method. 

IV.  EVALUATION OF MAA MODEL 
The proposed MAA model, was evaluated using five datasets, 

as depicted in Fig. 8, namely, three datasets obtained from the 
motor commutator production site, (MCSD-g, MCSD-c, and 
MCSD-h) and two benchmark datasets, (RSDDs [40], and 
KSDD [41]). Through this empirical evaluation, we demon-
strated the capability of the proposed MAA to detect and local-
ize defects in real-time. In addition, the performance of the in-
troduced MAA model was equivalent to that of the state-of-the-
art anomaly detection methods proposed in the literature. MAA 
was implemented in Python3.5 with the Pytorch0.4 framework 
to enhance the deep learning and GPU utilization capabilities. 
In addition, MAA was trained on a high-performance server, 
40-core CPU 2.4 GHz with 256 GB memory and dual NVIDIA 
Tesla P100 of 32 GB GPU units. The evaluation of MAA was 
conducted on a typical personal computer configuration, 6-core 
CPU 3.6 GHz with 16 GB memory and GPU of NVIDIA Ge-
Force GTX 1060 of 6 GB GPU, to ensure that the proposed 
MAA model could be realistically deployed in an industrial set-
ting. 

A. Datasets 
As depicted in Fig. 9, the motor commutator surface defect 

dataset (MCSD) was shot on a production line using a fixed 
camera under a fixed light source. We collected images of the 
groove, cylinder, and hook of the motor commutator. The 
groove dataset (MCSD-g) included 1458 defect-free samples, 
373 defective samples and 5 known types of defects. The cyl-
inder dataset (MCSD-c) included 323 defect-free samples, 66 
defective samples and 15 known types of defects. The hook da-
taset (MCSD-h) included 1094 defect-free samples, 159 defec-
tive samples and 7 known types of defects. These samples have 
complex backgrounds and various types of defects, which 
makes the defection difficult. 

The RSDDs [40] datasets could be classified into Type-I and 
Type-II datasets. The former was captured from express rails, 
and included 67 images, whereas the latter was captured from 
common/heavy haul rails, and included 128 images. In the case 
of a large-facility inspection, a practical rail line covering 45 
km of continuous rail surface images was adopted in RSDDs. 

 
Fig. 6.  Example of statistical model decision threshold. 

 
Fig. 7.  Example of extraction location information 
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We used the second type of data set and cropped the track image 
into small square blocks. This resulted in a total of 2794 images, 
including 2538 defect-free samples and 256 defective samples. 

KSDD [41] comprised 50 defective electrical commutators, 
each with up to eight relevant surfaces. This resulted in a total 
of 399 images, including 347 defect-free samples and 54 defec-
tive samples.  

B. Experimental Setup 
The experimental setup covered three main aspects as fol-

lows:  
1) Detection capabilities of the proposed MAA model was 

evaluated and compared with the state-of-the-art anom-
aly detection models on five datasets. 

2) The localization capability was evaluated and compared 
with three methods in the literature on five datasets. 

3) Three different distance measurement methods were 
evaluated and compared in five datasets. 

4) A run-time analysis of our approach was conducted to 
verify the real-time processing capabilities of the pro-
posed MAA.  

In this experiment, we trained the learning model at the learn-
ing rate of 10e-5 and Adams was to optimize the MAA. More 
specific parameters are listed in Table I. 

C. Defect Detection Results 
Defect detection was evaluated using six state-of-the-art 

deep learning-based approaches and VISIONPRO VIDI [42], 
which is a deep learning-based software for industrial image 
analysis. The selected deep learning-based approaches for com-
parison purposes, mentioned in section I and Ⅱ are as follows.  

The first is the three methods used in industrial image detec-
tion. The first method is DAE [6], as depicted in Fig. 2 (1). For 
actual comparison, we added DAE with skip connection, 
known as DAE (skip). The second method [7] is based on GAN, 
as depicted in Figure2 (2)-(3), which is similar to AnoGAN [31]. 
The third method [8] is to improve the detection efficiency 
based on GAN, depicted in Figure 2 (4), which is similar to Ef-
ficient-GAN [32] and f-AnoGAN [33]. To further prove the ad-
vantage of our method, we compared our experimental results 
with those of other advanced methods, namely GANomaly [34], 
CVAE-GAN [35] and ALOCC [36].  

We compared the results of the respective models using the 
ROC curves, corresponding area under the curve (AUC), accu-
racy, and recall of defective samples.  

 
Fig. 8. Images of the four datasets. (1), (2), (3), (4) and (5) represent defect-free samples, whereas (6), (7), (8), (9) and (10) represent defective samples. 

 
Fig. 9.   Motor commutator defect inspection equipment. (a) Overall structure 
design of inspection table, the cameras marked with the red boxes capture the 
images; from left to right: MCSD-h, MCSD-c, and MCSD-g. (b) Motor com-
mutator production line. 
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Fig. 10. ROC curves of anomaly detection results; from left to right: the results of MCSD-g, MCSD-c, MCSD-h, RSDDs, and KSDD datasets. 

TABLE Ⅱ 
RESULT OF DEFECTS DETECTION 

   OURS DAE DAE(SKIP) ANOGAN EFFICIENT-
GAN GANOMALY CVAE-

GAN ALOCC VIDI 

MCSD-g 
AUC 0.980 0.913 0.985 0.905 0.829 0.953 0.843 0.822 0.940 

Accuracy 0.832 0.837 0.947 0.855 0.836 0.892 0.804 0.774 0.855 
Recall 0.983 0.933 0.922 0.818 0.729 0.842 0.831 0.730 0.926 

MCSD-c 
AUC 0.977 0.906 0.793 0.761 0.655 0.903 0.757 0.840 0.970 

Accuracy 0.855 0.865 0.785 0.730 0.699 0.854 0.724 0.813 0.926 
Recall 1.000 0.773 0.591 0.515 0.379 0.803 0.727 0.651 0.929 

MCSD-h 
AUC 0.844 0.720 0.756 0.615 0.534 0.694 0.711 0.629 0.470 

Accuracy 0.663 0.748 0.748 0.679 0.731 0.694 0.692 0.698 0.407 
Recall 0.918 0.634 0.629 0.535 0.226 0.648 0.446 0.432 0.603 

RSDDs 
AUC 0.941 0.829 0.703 0.703 0.562 0.792 0.535 0.723 0.880 

Accuracy 0.815 0.772 0.624 0.644 0.723 0.777 0.513  0.661 0.801 
Recall 0.934 0.750 0.824 0.751 0.258 0.688 0.711 0.754 0.739 

KSDD 
AUC 0.857 0.711 0.699 0.630 0.645 0.711 0.586 0.768 0.750 

Accuracy 0.731 0.679 0.718 0.609 0.641 0.679 0.545 0.679 0.679 
Recall 0.904 0.673 0.558 0.673 0.647 0.673 0.788 0.885 0.692 

 

 
Fig. 11. Results of defect location. Row (a) represents the original samples, (b) and (c) represents the reconstructed and location images of our method, (d) and (e) 
represents the results of DAE, (f) and (g) represents the results of DAE(skip),  (f) and (g) are the results AnoGAN, (h) represents the result of ViDi. Columns (1), 
(2) and (3) represents the MCSD-g datasets, where (1) represents the defect-free samples, and (2) and (3) represents the defective samples. (4), (5), and (6) represents 
the MCSD-c datasets, (7), (8) and (9) represents the MCSD-h datasets, (10), (11), and (12) represents the RSDDs datasets, (13), (14), and (15) represents the KSDD 
datasets.  
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The ROC curve is illustrated in Fig. 10, and the AUC is pre-
sented in Table II. Our method outperforms all other methods 
on the five datasets. The highest AUC value implies that our 
method has the best classification ability in comparison with 
those of the other methods, which confirms that the proposed 
network structure of the MAA and the distance measurement 
method of FMD perform well in this type of task. 

If it is the same threshold determination method, an improved 
classification ability implies that our method must theoretically 
achieve a higher accuracy.  However, as can be seen in Table II, 
the accuracy obtained by our method in four datasets was lower 
than those obtained by the other methods. However, the recall 
rates achieved by our method were higher than those of the 
other methods in majority of the datasets. In particular, in the 
MCSD-t and MCSD-c datasets, the recall rates were higher than 
99.7%, with an accuracy rate of not less than 80%, which is 
consistent with the industrial-level defect detection accuracy. In 
fact, this experimental phenomenon is consistent with our 
threshold determination strategy. As a result, at the cost of 
lower accuracy, a higher recall rate was obtained. 

Furthermore, the performance of our method was better than 
that of ViDi, implying that our method has a higher practical 
application value.  

D. Localization Results 
The qualitative analysis of defect localization is depicted in 

Fig. 11. The defect localization was evaluated using AnoGAN 
[31], GANomaly [34] and ViDi [42] methods. on five datasets, 
namely, MSCD-g, MCSD-c, MCSD-h, RSDDs and KSDD.  

According to Fig. 10, in comparison with the original image, 
the reconstruction effect of our method was better than those of 
the other methods in generating defect-free regions; And           
our method was inferior in defect region generation. The defect 
location obtained by residual is clear. And compared with 
AnoGAN and DAE (skip), our method is clearer in the division 
of anomalous regions.  In addition, our method results in 
smaller noise in comparison with DAE, and more accurate po-
sitioning in comparison with ViDi. In summary, our method can 
be used to localize the anomalous area to a certain extent as a 
reference for defect detection.  

E. Comparison of distance measurement methods 
A distance measurement experiment was added to the revised 

manuscript. Under the same network structure, we replaced the 
distance measurement method, and got the table III. It can be 
found that the result is the worst when only the L1 distance is 
used, which proves that the Euclidean space distance measure-
ment is often invalid. The AUC value is greatly improved when 
Markov+L1 distance is used, which proves the effectiveness of 
the Markov random field. Finally, FMD has been further im-
proved compared to Markov+L1, which proves that Fréchet 
Distance is more accurate.  

F. Run-Time Analysis Results 
To simulate the production line environment more realisti-

cally, we conducted a real-time testing on a personal computer 
to ensure that it can meet the industrial production cycle re-
quirements. We used an NVIDIA GeForce GTX 1060 graphics 
card for parallel calculations. Because of the limited memory, 
four samples were evaluated simultaneously. The test results 
are presented in Table Ⅳ. Achieving approximately 33 FPS, 
our method demonstrated its ability for defect detection in real-
time. Moreover, CVAE-GAN occupies more memory than the 
maximum memory of the graphics card.  

V. CONCLUSION 
In this article, we proposed an innovative anomaly detection 

approach for surface defects detection using memory-aug-
mented adversarial autoencoders, which can detect and localize 
defects for real-time with only defect-free samples for training.  

The results of the experiments conducted on two benchmark 
datasets and three datasets collected from the production line 
prove the accuracy, robustness, and low computational over-
heads of the proposed approach, confirming its applicability in 
the industrial field. In terms of surface defect detection, the pro-
posed MAA requires only defect-free samples as the training 
set, which saves the cost of data collection and marking. In ad-
dition, it provides an easy to train algorithm model capable of 
end-to-end detection. Furthermore, it has a high recall rate and 
can meet the industrial production cycle requirements.  

We will combine the residuals of the feature matrix with 
those of the image to localize the defect and outline the defect 
contour more accurately in our future works. 
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