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A B S T R A C T

In surface defect detection, some regions remain ambiguous and cannot be distinctly classified as abnormal or
normal. This challenge is exacerbated by subjective factors, including workers’ emotional fluctuations and
judgment variability, resulting in noisy labels that lead to false positives and missed detections. Current
methods depend on additional labels, such as clean and multi-labels, which are both time-consuming and
labor-intensive. To address this, we utilize Rough Set theory and Bayesian neural networks to learn a
trustworthy model from noisy labels for Surface Defect Detection. Our approach features a novel pixel-level
representation of suspicious areas using lower and upper approximations, and a novel loss function that
emphasizes both precision and recall. The Pluggable Spatially Bayesian Module (PSBM) we developed enhances
probabilistic segmentation, effectively capturing uncertainty without requiring extra labels or architectural
modifications. Additionally, we have devised a ‘defect discrimination confidence’ metric to better quantify
uncertainty and assist in product quality grading. Without the need for extra labeling, our method significantly
outperforms state-of-the-art techniques across three types of datasets and enhances seven types of classic
networks as a pluggable module, without compromising real-time computing performance. For further details
and implementation, our code is accessible at https://github.com/ntongzhi/RoughSet-BNNs.
1. Introduction

Surface defect inspection is vital in manufacturing, widely applied
in sectors such as semiconductor electronics, automotive, pharma-
ceuticals, and chemicals. Recently, deep learning have excelled in
identifying surface defects [1–4]. However, because deep learning mod-
els are data-driven, they are susceptible to replicating or amplifying
human errors and biases present in the training datasets during the data
labeling process [5–8].

Two primary challenges arise in the annotation task: (1) Objective
challenges: Some suspicious regions cannot be uniquely classified as ab-
normal or normal, such as those with weak features or border regions.
In many cases, the defect and background are the same material, with
very similar colors and textures. The boundary between the defect and
the background is usually not a distinct line but a gradient region. (2)
Subjective challenges: The labeling of weak feature and border regions
is easily affected by factors including workers’ unstable emotions,
judgment standards, and technique levels, resulting in noisy labels.

The indistinct nature of these suspicious regions leads to noisy
labels, manifested in two ways: over-labeling, where suspicious regions

∗ Corresponding author.
E-mail address: libin999@hust.edu.cn (B. Li).

are erroneously annotated as anomalies, and under-labeling, where
they are incorrectly marked as normal. It is common for suspicious
regions with identical characteristics to be inconsistently labeled across
different samples, which is the primary characteristic of noisy labels in
surface defect detection.

This inconsistency in noisy labels hinders the learning of robust
representations for suspicious regions. As illustrated in Fig. 1, the
model trained on noisy labels exhibits two types of errors: (1) False
detection: The model overfits to over-labeled suspicious regions in the
noisy labels, leading to the erroneous detection of certain regions as
anomalies, even though they are annotated as normal, as exemplified in
rows (a) and (b). (2) Missed detection: Conversely, the model underfits
and fails to recognize some suspicious regions as anomalies, despite
their annotation as such in the labels, as indicated in rows (c) and
(d). Accurate measurement of the geometric dimensions of abnormal
regions, such as length or diameter, is crucial for determining defective-
ness. However, both false and missed detections result in the imprecise
measurement of these dimensions, leading to inconsistent evaluations
of product quality.
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Fig. 1. Results of our model learning from noisy labels. As can be seen from row (a) and (b), the suspicious regions are annotated as normal in the labels, but are falsely detected
as abnormal in the U-net. In contrast, as shown in the row (c) and (d), the suspicious regions are marked as abnormal but detected as normal. In our methods, U-net based BNNs,
suspicious regions are represented by segmentation probabilities. The lower approximations are same as the labels in false detections, and the upper approximations are same as
the labels in missing detections.
Fig. 2. Uncertain model of noisy label based on Rough Set. The suspicious regions are described by lower and upper approximations in (1) and (2). The segmentation probability
that is solvable for neural networks is used to characterize uncertain regions in (3).
To learn from noise labels, several robust architectures have been
developed, including regularization method [9,10], robust loss func-
tions [11,12], and sample selection methods [13,14]. However, most
of these approaches focus primarily on image-level labels. In contrast,
for pixel-level noisy labels, current methods aim to mitigate their neg-
ative effects using evaluation-based and correction-based techniques.
Evaluation-based strategies such as ADL [15] and Pick-and-Learn [16]
adjust the training loss based on the quality of image-level labels but
lack the granularity offered by a pixel-level approach. Additionally,
the design of effective evaluation strategies is complicated by the typi-
cal inconsistencies, rather than outright errors, associated with noisy
labels in defect detection. Correction-based methods like GAT [17],
WSSS [18], MV-DAR [6], and MTCL [7] often depend on supplementary
label information, such as a few clean labels, intermediate labeling vari-
ables, and multi-labels. These requirements are both time-consuming
and labor-intensive, particularly due to the difficulty in distinguishing
between suspicious and true labels.
2 
Firstly, the suspicious regions are defined as uncertain areas, distinct
from the normal and abnormal regions, and represent them with two
precise boundary lines [19]: the lower and upper approximations, as
shown in Fig. 2. The lower approximation encompasses all regions that
are definitively anomalous, while the upper approximation includes po-
tential anomalies. These uncertain regions comprise pixels that cannot
be uniquely classified using available features. Specifically, we employ
neural network-derived segmentation probabilities to denote uncertain
regions, where a pixel’s value indicates its probability of abnormality,
as depicted in Fig. 2(3). Ultimately, these approximations are precise
and free from uncertainty and inconsistency. Therefore, inspired by
Tversky loss [20], we have restructured the loss function so that the
lower approximation calculates the precision penalty, and the upper
approximation determines the recall penalty.

Secondly, the uncertainty of segmentation probabilities is captured
using Bayesian neural networks (BNNs). Inspired by Dropout-based
BNNs [21–24] and building on DropBlock [25], we introduce the PSBM,
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which drops contiguous regions from a layer’s feature map rather than
independent random units. We investigate the optimal application of
PSBM blocks in constructing BNNs without modifying the existing
network architecture. Specifically, we explore the appropriate number
and placement of PSBM blocks. During training, the uncertain regions
identified by the variance of multiple BNN outputs are utilized for label
correction. In testing, the intersection and union of multiple model
outputs are used to determine the lower and upper approximations,
respectively.

To this end, we introduce the concept of ‘defect discrimination con-
fidence’ as a metric to gauge the uncertainty in identifying anomalies
as defects. Within the framework of segmentation probability, various
geometric dimensions are determined based on differing probability
levels. These dimensions are then compared against thresholds estab-
lished by national, industry, or factory standards. When the geometric
dimensions fall below the threshold, the confidence is set at 0%.
Conversely, if the dimensions exceed the threshold, the confidence level
reaches 100%. For cases where the threshold lies within the range
of geometric dimensions, the confidence is assigned the correspond-
ing probability value of the threshold. This confidence level can be
leveraged in production to classify products. Factories can adjust the
confidence threshold in accordance with their specific requirements,
thereby achieving consistent and trustworthy judgment outcomes.

In summary, this paper introduces a novel framework for learning
a trustworthy model from noisy labels without the need for additional
labeling or alterations to the network structure. Our key contributions
are as follows:

(1) Representation of Suspicious Regions: We define suspicious
egions as uncertain areas with precise lower and upper approximations
sing Rough Set theory, capturing the ambiguity in defect detection.

(2) Redesigned Loss Function: Inspired by Tversky loss, we re-
esign the loss function to incorporate precision and recall penalties
ased on the lower and upper approximations.

(3) PSBM: We introduce the PSBM, which drops contiguous re-
ions from a layer’s feature map to capture segmentation uncertainty
ffectively without modifying the existing network architecture.

(4) Defect Discrimination Confidence: This metric quantifies un-
ertainty in defect identification, allowing for reliable quality control
nd product classification based on adjustable confidence thresholds.

Our proposed method offers several key advantages:
(1) Efficient Use of Noisy Labels: No additional label information

s required, saving data labeling costs and fully utilizing limited data.
(2) Redesigned Loss Function: Incorporates precision and recall

enalties to enhance the model’s ability to focus on relevant features
hile minimizing false positives and false negatives.

(3) Pluggable Module: The PSBM can be easily integrated into
xisting defect detection systems, enhancing their performance without
equiring significant changes to the underlying architecture.

(4) Scalability and Adaptability: Our method outperforms state-
f-the-art techniques across multiple datasets and can enhance vari-
us classic networks, demonstrating its scalability and adaptability to
ifferent industrial scenarios.

. Related works

Our proposed method focuses on learning trustworthy models from
oisy labels, effectively addressing the uncertainty and inconsistency
rising from suspicious regions in surface defect detection. The method
ncorporates both Rough Set theory and Bayesian Neural Networks
BNNs). This section provides a brief review of the development of
ough Set theory and BNNs. Subsequently, we discuss the latest re-
earch on learning from noisy labels.
3 
.1. Development of rough set and Bayesian neural networks

The fundamental concepts of Rough Sets and approximation spaces
ere introduced by Pawlak [19]. Since their inception, Rough Sets have
een recognized as a potent mathematical tool for analyzing objects
ith vague descriptions, characterized by inconsistency and ambiguity.
ny subset 𝑋 of a universe 𝑈 can be defined either precisely or ap-
roximately using elementary sets. In the approximate approach, 𝑋 is
haracterized by two distinct sets: the lower and upper approximations.
he lower approximation of 𝑋 comprises all elementary sets contained
ithin 𝑋, while the upper approximation includes all elementary sets

hat intersect with 𝑋. The boundary region of a Rough Set, delineated
y the difference between its upper and lower approximations, contains
lements whose membership in 𝑋 is uncertain. In our research, we
imilarly express the suspicious region in an approximate manner. The
ower approximation encompasses all regions that definitely belong to
efects, whereas the upper approximation includes all potential defect
egions.

BNNs [26] addresses challenges in Bayesian neural networks by
efining prior distributions that converge to Gaussian or non-Gaussian
rocesses as network size increases and demonstrates the effectiveness
f hybrid Monte Carlo methods for posterior integration. Nonetheless,
ue to the immense parameter count, modeling a distribution over
hese kernels poses a significant challenge and incurs additional com-
utational costs. Dropout-based BNNs [23] demonstrated that applying
ropout in neural networks equates to a Bayesian approximation of
aussian processes, without compromising computational efficiency or

est accuracy. Concurrently, Yarin [21] introduces a Bayesian CNN that
educes overfitting on small data by using probability distributions over
ernels and Bernoulli variational distributions, significantly improving
lassification accuracy. Alex [22] developed a deep learning framework
or probabilistic semantic segmentation, known as Bayesian SegNet.
uilding upon these foundations, our paper proposes a surface defect
etection network based on BNNs, extending previous work in the field.

.2. Latest research on learning from noisy labels methods

Noisy labels in real-world datasets are estimated to range from
.0% to 38.5% [27], making learning from noisy labels an increasingly
ritical task. To address this, robust architectures [28–31] have been
eveloped, featuring noise adaptation layers atop the softmax layer
nd bespoke architectures. Robust regularization methods [9,10] en-
ance resistance to label noise using standard techniques such as data
ugmentation, weight decay, and dropout. To minimize risk on unseen
lean data, robust loss functions [11,12] have been designed, even in
he presence of noisy training data. Sample selection methods [13,14]
ffer strategies to sift true-labeled examples from noisy datasets. How-
ver, for defect detection, we concentrate on segmentation tasks, where
hese image-level noisy label methods are not directly applicable.

As shown in Table 1, at the pixel level, methods for learning from
oisy labels can be categorized into four types: correcting noisy labels,
iltering noisy labels, redesigning loss functions, and blurring label
dges. Correcting noisy labels-based methods, such as GAT [17], use a
raph Attention Network to propagate information from clean labels
ithin a superpixel-based graph, while WSSS [18] employs an L1-
ptimization based sparse learning model with an intermediate labeling
ariable. However, these methods require additional label information,
hich is time-consuming and labor-intensive. Filtering noisy labels-
ased methods, like ADL [15], propose adaptive denoising strategies
o detect and remove high-loss noisy labels during training, and Pick-
nd-Learn [16] uses a quality awareness module to assess label quality
nd re-weight samples. Yet, in surface defect detection, noisy labels
re common, and filtering them means not fully utilizing the limited
ata and labels. Redesigning loss functions-based methods, such as the
oise-Robust Dice Loss [32,33], combine MAE loss and Dice loss to
ddress noisy labels but have limited effectiveness in surface defect
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Table 1
Current literature summary.

Study Method Contribution Limitations Our contribution

GAT [17] Correct noisy
labels

Use a Graph Attention Network to
propagate information from clean labels
within a superpixel-based graph.

Require additional label
information, which is
time-consuming and
labor-intensive.

Identifies inaccurate information
as uncertain regions using rough
sets instead of correcting noisy
labels, which do not require
additional label informationWSSS [18] Employs an L1-optimization based sparse

learning model with an intermediate
labeling variable.

ADL [15] Filter noise
labels

Propose adaptive denoising strategies to
detect and remove high-loss noisy labels
during training.

Noisy labels are common, and
filtering them means not fully
utilizing the limited data and
labels.

Maximizes limited data, using
rough sets and redesigned loss
functions to leverage both certain
and uncertain information in
noisy labels.

Pick-and-Learn
[16]

Uses a quality awareness module to assess
label quality and re-weight samples.

Noise-Robust
Dice Loss
[32,33]

Redesign loss
function

Combine MAE loss and Dice loss to address
noisy labels.

Limited effectiveness in surface
defect detection.

Redesigns the loss function,
incorporating precision and recall
penalties.

Gaussian edge
softening [34,35]

Blurring label
edges

Reduce noise and improve performance for
uncertain ground truth by smoothing labels.

Over-smoothing can result in the
loss of valuable label information.

Using upper and lower
approximations allows model to
take into account both valuable
information.
D
s

i
f

𝑖

a

detection. Blurring label edges-based methods, like Gaussian edge soft-
ening [34,35], reduce noise and improve performance for uncertain
ground truth by smoothing labels. However, this can cause the model
to underfit, and over-smoothing can result in the loss of valuable label
information.

In this paper, instead of correcting or filtering noisy labels, we de-
fine the inaccurate information in noisy labels (suspicious regions in the
image) as uncertain areas with precise lower and upper approximations
using Rough Set theory. We then extend BNNs and redesign the loss
function to capture the uncertainty in noisy labels, enabling the model
to learn a confidence metric from the noisy labels.

3. Proposed methodology

3.1. Overall framework

The proposed methodology comprises three major components: (1)
the representation of noisy labels and the redesigned loss function; (2)
the Pluggable Spatially Correlated Bayesian Module (PSBM) and its
application modes; (3) the method for calculating ‘defect discrimination
confidence’.

Initially, we will explore the fundamental concepts of representing
noisy labels based on Rough Set theory and introduce the redesigned
loss functions.

Next, we will elucidate the probabilistic model and PSBM. To inte-
grate PSBM into various customized models effectively, we will present
adaptable application modes. This section will also detail the training
mechanism and the process for inferring segmentation probabilities.
To illustrate, we will use U-net as an example to demonstrate the
development of a U-net based Bayesian Neural Network (BNN).

Lastly, the method for calculating ‘defect discrimination confidence’
will be presented, detailing how it contributes to the identification of
defects.

3.1.1. Representation of noisy labels based on rough set
Let us examine a straightforward framework for representing knowl-

edge with noisy labels, where a finite collection of regions is character-
ized by a finite collection of attributes. This concept can be formally
defined through an information system denoted as 𝑆:

= (𝑈,𝐴) (1)

n this context, 𝑈 represents a finite, nonempty set containing all the
egions within the image, while 𝐴 denotes a finite, nonempty set of
ttributes, such as texture, grayscale, and others.
4 
efinition 1 (Indiscernible Relation). In our system, each region in the
et 𝑈 can be described using attributes from the set 𝐴. The indiscernible

relation 𝑖𝑛𝑑(𝐵) for a subset of attributes 𝐵 ⊆ 𝐴 groups regions together
f they share the same values for these attributes. It is defined as
ollows:

𝑛𝑑(𝐵) = {(𝑥, 𝑦) ∈ 𝑈 × 𝑈 ∣ all attributions in 𝐵

are the same for 𝑥 and 𝑦} (2)

This means that any two regions 𝑥 and 𝑦 are in relation 𝑖𝑛𝑑(𝐵) if they
cannot be distinguished by any attributes in 𝐵. We denote the group of
all regions indistinguishable from a region 𝑥 as [𝑥].

Definition 2 (Upper and Lower Approximation Sets). For an anomaly
region 𝑅 ⊆ 𝑈 , the lower and upper approximation sets are defined as
follows:

𝑎𝑝𝑟(𝑅) = {𝑟 ∈ 𝑈 ∣ [𝑟] ∩ 𝑅 = ∅} (3)

𝑎𝑝𝑟(𝑅) = {𝑟 ∈ 𝑈 ∣ [𝑟] ⊆ 𝑅} (4)

where [𝑟] represents the equivalence class of 𝑟.

Definition 3 (Anomaly, Boundary, and Normally Regions). The collection
of all equivalence classes is referred to as the quotient set of 𝑈 , denoted
as 𝑈∕𝐴 = [𝑟] ∣ 𝑟 ∈ 𝑈 . This allows the universe to be partitioned into
three distinct regions: the anomaly region, the boundary region, and
the normal region.

𝐴𝑁𝑂(𝑅) = 𝑎𝑝𝑟(𝑅) (5)

𝑁𝑂𝑅(𝑅) = 𝑈 − 𝑎𝑝𝑟(𝑅) (6)

𝐵𝑁𝐷(𝑅) = 𝑎𝑝𝑟(𝑅) − 𝑎𝑝𝑟(𝑅) (7)

If a region 𝑟 ∈ 𝐴𝑁𝑂(𝑅), it certainly belongs to the anomaly set 𝑅. If
region 𝑟 ∈ 𝑁𝑂𝑅(𝑅), it certainly does not belong to 𝑅. If a region

𝑟 ∈ 𝐵𝑁𝐷(𝑅), it is indeterminate whether 𝑟 belongs to 𝑅. Hence, the
suspicious regions are represented by 𝐵𝑁𝐷(𝑅).

Definition 4 (Segmentation Probability). To achieve a solvable represen-
tation for neural networks, we define the segmentation probability to
characterize the suspicious regions, where the pixel value indicates the
likelihood of the pixel being anomalous.

𝑎𝑝𝑟(𝑅) = {𝑣 ∈ 𝑉 ∣ 𝑣 = 1} (8)
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𝑎𝑝𝑟(𝑅) = {𝑣 ∈ 𝑉 ∣ 𝑣 > 0} (9)

ere, 𝑣 represents the pixel value, and 𝑉 is the set of all pixels in the
mage

.1.2. Redesigned loss function
Despite the inconsistency present in the suspicious regions, the

ower and upper approximations remain consistent. Drawing inspira-
ion from Tversky loss [20], we have reformulated the loss function as
ollows:

𝑜𝑠𝑠 = 1 − 𝛼
|

|

|

𝑎𝑝𝑟(𝑌 ) ∩ |

|

|

|

|

|

𝑎𝑝𝑟(𝑌 ) ∩ |

|

|

+ |

|

|

 − 𝑎𝑝𝑟(𝑌 )||
|

−𝛽
|

|

𝑎𝑝𝑟(𝑌 ) ∩ |

|

|

|

𝑎𝑝𝑟(𝑌 ) ∩ |

|

+ |

|

𝑎𝑝𝑟(𝑌 ) − |

|

(10)

Here, 𝑌 denotes the label,  represents the output of the neural
etworks, and |⋅| means the cardinality of a set, with 𝛼 + 𝛽 = 1. The
ower approximation is utilized to compute the precision penalty, while
he upper approximation is employed to determine the recall penalty.

.2. The methods and application of pluggable spatially Bayesian module

.2.1. Probabilistic modeling
The training data and labels are 𝑋 =

{

𝑥1,… , 𝑥𝑁
}

and 𝑌 =
{

𝑦1,… , 𝑦𝑁
}

, and we try to determine a posterior distribution 𝑝(𝑓 ∣
, 𝑌 ) by employing Bayesian approach, where 𝑦 = 𝑓 (𝑥) and our goal is

o determine a function 𝑦 = 𝑓 (𝑥).
In BNNs, the objective is to determine the posterior distribution of

he convolutional weights:

= (𝑊𝑖)𝐼𝑖=1 (11)

et 𝑊𝑖 denote the weight of the 𝑖th layer in the convolutional neural
etworks. Directly obtaining 𝑝(𝑤 ∣ 𝑋, 𝑌 ) is difficult, so we approximate

it with 𝑞(𝑤) using Gaussian priors and Bernoulli random variables.
Dropout probabilities 𝑏𝑖,𝑗 and kernel parameters 𝐾𝑖 define 𝑞(𝑊𝑖) for
ach layer.

𝑖 = 𝐾𝑖 ⋅ 𝑑𝑖𝑎𝑔([𝑏𝑖,𝑗 ]𝐽𝑗=1)

𝑖,𝑗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖)𝑓𝑜𝑟 𝑖 = 1,… , 𝐼, 𝑗 = 1,… , 𝐽
(12)

he 𝑑𝑖𝑎𝑔(⋅) operator transforms vectors into diagonal matrices with
he vector elements placed along the diagonals. The probability 𝑝𝑖 is
ssigned a fixed value from a Bernoulli distribution, usually 𝑝𝑖 = 0.5.
ere, 𝐼 represents the layer, and 𝐽 denotes the neurons.

In optimizing the network, we seek to minimize the Kullback–
eibler (KL) divergence between two distributions:

𝐿(𝑞(𝑤) ∥ 𝑝(𝑤 ∣ 𝑋, 𝑌 )) (13)

inimizing this KL divergence is equivalent to maximizing the log
vidence lower bound (ELBO):

𝐼𝑉 ∶=
𝑁
∑

𝑖=1
𝐸(𝑦𝑖, 𝑓 (𝑥𝑖, �̂�𝑖)) −𝐾𝐿(𝑞(𝑤) ∥ 𝑝(𝑤)) (14)

where 𝐸(⋅) is a softmax likelihood loss function, with �̂�𝑖 ∼ 𝑞(𝑤). As
uggested by Ref. [23], we apply 𝐿2 regularization to the weights:

𝑑𝑟𝑜𝑝𝑜𝑢𝑡 ∶=
𝑁
∑

𝑖=1
𝐸(𝑦𝑖, 𝑓 (𝑥𝑖, �̂�𝑖)) +

𝐼
∑

𝑖=1
(‖
‖

𝑊𝑖
‖

‖

2
2 + ‖

‖

𝑏𝑖‖‖
2
2) (15)

ere, ‖⋅‖22 denotes the square of the 𝐿2 norm.
For network inference, we use Monte Carlo integration:

(𝑦∗|𝑥∗, 𝑋, 𝑌 ) ≈ 1
𝑇

𝑇
∑

𝑡=1
𝑓 (𝑥∗, �̂�𝑡) (16)

Here, 𝑥∗ and 𝑦∗ are test inputs and outputs, and �̂�𝑡 ∼ 𝑞(𝑤). The
hyperparameter 𝑇 balances accuracy and computational cost.
5 
Algorithm 1 PSBM
Require: Feature map: 𝐴𝑖𝑛𝑝𝑢𝑡 of size (𝐶,𝐻,𝑊 ); Convolution kernel: 𝐾

of size (𝐿,𝐿); Probability: 𝑝 = 0.5.
nsure: Output feature map: 𝐴𝑜𝑢𝑡𝑝𝑢𝑡.
1: Bernoulli distribution probability of PSBM 𝛾 :

𝛾 = ((1 − 𝑝)∕𝐿2) ⋅ (𝑊 2∕(𝑊 − 𝐿 + 1)2)
2: Dropout probabilities 𝑏𝑖:

𝑏𝑗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝛾) for 𝑗 = 1, ..., 𝐿2

3: Randomly sample Mask 𝑀 :
𝑀 = 𝑑𝑖𝑎𝑔([𝑏𝑗 ]𝐿

2

𝑗=1)
4: Get Block mask 𝑀𝐵𝑙𝑜𝑐𝑘 by max pooling, pooling size is (𝐿,𝐿), stride

is (1, 1), and padding is (𝐿∕2, 𝐿∕2):
𝑀𝐵𝑙𝑜𝑐𝑘 = 1 − 𝑚𝑎𝑥_𝑝𝑜𝑜𝑙(𝑀)

5: Apply the Block Mask:
𝐴𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐴𝑖𝑛𝑝𝑢𝑡 ×𝑀𝐵𝑙𝑜𝑐𝑘

6: Normalize the features:
𝐴𝑜𝑢𝑡𝑝𝑢𝑡 = 𝐴𝑜𝑢𝑡𝑝𝑢𝑡 × 𝑐𝑜𝑢𝑡(𝑀𝐵𝑙𝑜𝑐𝑘)∕𝑐𝑜𝑢𝑡_𝑜𝑛𝑒𝑠(𝑀𝐵𝑙𝑜𝑐𝑘)

7: return 𝐴𝑜𝑢𝑡𝑝𝑢𝑡

3.2.2. The PSBM and its application modes

Based on DropBlock [25], we have designed the PSBM. The pseu-
docode of PSBM is illustrated in Algorithm 1. To enhance computing
efficiency, the entire PSBM process performs tensor calculations on the
GPU. Specifically, the Mask 𝑀 is generated using the 𝑡𝑜𝑟𝑐ℎ.𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖
function, and the Block Mask 𝑀𝐵𝑙𝑜𝑐𝑘 is created through maximum
pooling. Moreover, as both the probability 𝑝 and feature 𝐴𝑜𝑢𝑡𝑝𝑢𝑡 are
normalized, the latter term in Eq. (15) can be considered as 0.

Our exploration focuses on applying PSBM in the construction of
BNNs without altering the network structure. We address the following
key considerations:

(1) The optimal number of PSBM applications. While Dropout ran-
domly removes units from neural networks to prevent overfitting, it can
also diminish the network’s learning capacity. Excessive regularization
may slow down the learning process. Therefore, we adhere to two
principles: PSBM should not be applied to every network layer as a reg-
ularization method, and it should not coexist with other regularization
methods within the same layer.

(2) The appropriate placement of PSBM. Given that standard seman-
tic segmentation models typically comprise encoders and upsampling
layers, we categorize network layers into low-level and high-level.
Low-level layers extract basic features like edges and corners, while
high-level layers capture more complex features, such as shapes and
contextual relationships. Low-level features are consistent across differ-
ent models, but applying PSBM to mask high-level features may prove
more effective. Consequently, PSBM should ideally be implemented at
the higher levels of the encoders.

3.2.3. Training mechanism
During training, the inputs of the training set are denoted as

{𝑥1,… , 𝑥𝑁}, with corresponding annotations {𝑦1,… , 𝑦𝑁}. The segmen-
tations of the 𝑖th, {�̂�1𝑖 ,… , �̂�𝑖 }, are computed  times using BNNs:

�̂�𝑡𝑖 = 𝑓 (𝑥𝑖, �̂�𝑡) (17)

Initially, we compute the mean 𝜇𝑖 and variance 𝜎𝑖 of these segmenta-
tions:

𝜇𝑖 =
1



∑

𝑡=1
(�̂�𝑡𝑖) (18)

𝑖 =
1


∑

(�̂�𝑡𝑖 − 𝜇𝑖) (19)

 𝑡=1
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Fig. 3. An overview of optimization and inference of U-Net-based BNNs transformed by pluggable Bayesian modules.
The variance 𝜎𝑖 is then normalized at the pixel level:

̂𝑖 = (𝜎𝑖 − 𝑚𝑖𝑛(𝜎𝑖))∕(𝑚𝑎𝑥(𝜎𝑖) − 𝑚𝑖𝑛(𝜎𝑖)) (20)

Typically, the variance represents the uncertain part of the label,
corresponding to the suspicious region. We therefore adjust the labels
using these normalized variances:

𝑎𝑝𝑟(𝑦𝑖) = 𝑦𝑖 − 𝑦𝑖 × 𝜎𝑖 (21)

𝑎𝑝𝑟(𝑦𝑖) = 𝑦𝑖 + 𝜎𝑖 (22)

Finally, the loss function, based on Eqs. (10) and (15), is formulated as:

𝐿𝑜𝑠𝑠 = 1
𝑁

𝑁
∑

𝑖=1
(1 − 𝛼

𝑎𝑝𝑟(𝑦𝑖) × �̂�𝑡𝑖
𝑎𝑝𝑟(𝑦𝑖) × �̂�𝑡𝑖 + (1 − 𝑎𝑝𝑟(𝑦𝑖)) × �̂�𝑡𝑖

−𝛽
𝑎𝑝𝑟(𝑦𝑖) × �̂�𝑡𝑖

𝑎𝑝𝑟(𝑦𝑖) × �̂�𝑡𝑖 + 𝑎𝑝𝑟(𝑦𝑖) × (1 − �̂�𝑡𝑖)
)

(23)

Here, 𝛼 + 𝛽 = 1, and �̂�𝑡𝑖 is randomly selected from {�̂�1𝑖 ,… , �̂�𝑖 }.

3.2.4. Inference for segmentation probability
We use Monte Carlo integrations to approximate the segmentation

probability. The inputs and outputs of the testing set are denoted as 𝑥∗

and 𝑦∗, respectively. Following Eq. (16), the segmentation probability
is calculated as:

𝑝(𝑦∗) ≈ 1
𝑇

𝑇
∑

𝑡=1
𝑓 (𝑥∗, �̂�𝑡) (24)

3.2.5. U-net based Bayesian neural networks
To more clearly illustrate the optimization and inference processes

of BNNs, we have designed the overall network structure based on U-
net [36], as shown in Fig. 3. In line with the approach described in
Section 3.2.2, we replace BatchNorm with PSBM in the last three layers
of the encoder.

During training, the input is processed multiple times by the U-
net-based BNNs to produce 𝑁 sample segmentations (Seg). The noisy
labels are then corrected using the variance (Var) of these multiple
Segs, leading to the formation of the lower approximation (𝐿𝑎𝑏𝑒𝑙𝑙𝑜𝑤𝑒𝑟)
and upper approximation (𝐿𝑎𝑏𝑒𝑙𝑈𝑝𝑝𝑒𝑟). These, along with the 𝑖th Seg,
are utilized to compute the loss function (Eq. (23)).
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For testing, the segmentation probability (Output) is approximated
using Monte Carlo integrations, as indicated in Eq. (24). Based on the
Output, we determine the lower and upper approximations, as well as
the boundary regions

3.3. Defect discrimination confidence

Now, we get the probability of each pixel in the image. Then, it is
crucial to calculate the confidence of networks discriminations based
on the probability. As we all know, the semantic segmentation results
cannot be used directly to distinguish whether the sample is NG or
not. The geometric dimensions of the defective region, such as length,
diameter, etc., need to be counted. Finally, according to the threshold
given by the national-, industry-, or factory-standard, it is determined
whether it is defective or not. Therefore, we define the discriminant
confidence based on the relationship between the threshold and the
probability.

As illustrated in Fig. 4, we take different probabilities 𝜆 ∈ [0, 1].
According to Eqs. (8) and (9), when 𝜆 = 1, the lower approximation is
obtained, while 𝜆 > 0, the upper approximation is given. And 𝑣 is the
value of each pixel of the segmentation. We define that the geometric
dimensions (𝐺𝐷) of the defective region are calculated by

𝑔(𝜆) = ∫

𝑣=1

𝑣=𝜆
𝐺𝐷(𝑣) 𝑑𝑣 (25)

And the threshold given by the national-, industry-, or factory-
standard is represented by 𝛬. The confidence is calculated as follows:

𝐶𝑥∗ (𝛬) =

⎧

⎪

⎨

⎪

⎩

0%, 𝑔(0+) < 𝛬

𝑔−1(𝛬), 𝑔(1) < 𝛬 < 𝑔(0+)

100%, 𝑔(1) > 𝛬

⎫

⎪

⎬

⎪

⎭

(26)

where 𝑔−1(𝛬) represent the inverse function of 𝑔(𝛬).
The ‘defect discrimination confidence’ function plays a crucial role

in enhancing quality control by providing confidence levels for defect
predictions, thereby assessing the reliability of detected defects. Al-
though it is not utilized during the training phase, this metric is derived
from the segmentation probability maps produced by the Bayesian
Neural Network (BNN) after training. It is essential for evaluating
the certainty of defect detections, which aids in quality grading and
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Fig. 4. Confidence evaluation method.
Table 2
Details of three datasets.

Dataset Image numbers Noise level Open-source status

Train Test

NEU-seg [37] 3630 840 Pixel-level Yes
MCSD-seg [38] 532 134 Pixel-level No
LC-seg [39] 502 126 Pixel-level No

decision-making. Overall, by implementing ‘defect discrimination con-
fidence’, the reliability of defect detection processes is significantly
improved.

The ‘defect discrimination confidence’ metric provides confidence
levels for defect predictions, helping assess the reliability of detected
defects and aiding in quality control decisions. This metric is not used
during training but is calculated from the segmentation probability
maps produced by the Bayesian Neural Network (BNN) after training. It
evaluates the certainty of defect detections, which aids in quality grad-
ing and decision-making. By using ‘defect discrimination confidence’,
we improve the reliability of defect detection and enhance quality
control processes.

4. Experiments

4.1. Implementation details

We set the base learning rate to 0.003 with a decay factor of 0.0001.
The mini-batch size is 4, and the dropout probability is 50%. The
method is implemented in PyCharm using PyTorch and trained on
a server with an NVIDIA Tesla A100 GPU (40 GB memory) running
CentOS 8 Linux.

4.2. Datasets

In this study, three datasets have been chosen to support and
evaluate the proposed method’s applicability and generality. These
include one benchmark dataset (Open-source), NEU-seg [37], and two
datasets (Not open-source) sourced from actual industrial production
lines: MCSD-seg [38] for motor commutators, and LC-seg [39] for
light chips. All images have been resized to a uniform dimension of
256 × 256 pixels. The division between training and testing sets is made
randomly in an 8:2 ratio, as detailed in Table 2.

4.3. Evaluation metrics

Noise in labels makes it difficult to get clean data. We use the lower
approximation for accuracy and the upper approximation for recall.
To evaluate segmentation, we use the intersection-over-union (IoU)
metric, comparing our method with other segmentation approaches.
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Table 3
Result of ablation example in NEU-Seg dataset.

U-net PSBM Bayes Loss Recall Precision IoU

s1
√

0.8845 0.8455 0.7581
s2

√ √

0.8802 0.8563 0.7644
s3

√ √ √

0.9113 0.9175 0.7643
s4

√ √ √ √

0.9350 0.9390 0.7670

4.4. Ablation experiment

In this study, we have implemented the following key improve-
ments at the network level: (1) the introduction of the PSBM, based
on DropBlock; (2) the derivation of upper and lower approximations
through Bayesian inference; (3) the redesign of the loss function using
Rough Set theory. Consequently, we conducted four sets of ablation
experiments using the U-net [36] on the NEU-seg dataset: s1 employing
the original U-net as the baseline control group; s2 using a U-net
modified with PSBM as the second control group; s3 adding Bayesian
inference to the modified U-net (second control group) as the third
group; s4 our method as the fourth group, which enhances U-net with
PSBM, Bayesian inference, and a Rough Set-based loss function.

The ablation study results are presented in Table 3 and Fig. 5. While
PSBM improves U-net’s IoU values, it only minimally affects precision
rates, and even reduces recall. This suggests that although Dropout can
enhance the network’s data fitting capability, it is less effective for
noisy labels in surface defect detection. Bayesian inference significantly
improves both recall and precision rates by providing a posterior
distribution. It effectively demarcates false detection regions with lower
probabilities and identifies missing detection regions, demonstrating
its ability to capture label uncertainty effectively. Further, the Rough
Set-based loss function enhances the recall and precision rates. It also
delineates anomalies more distinctly and yields more probabilistically
accurate results.

4.5. Comparative experiment

In this study, we focus on anomaly segmentation for surface defect
detection. Classification model learning methods from noisy labels, as
in [9–14,28–31], are not directly comparable to our approach. Pixel-
level segmentation methods that rely on additional label information
prove challenging to implement in defect detection datasets. Conse-
quently, our method is compared with ADL [15], Pick-and-Learn [16],
Label Smoothing [34] and Noise-Robust Dice Loss [32]. Addition-
ally, considering our method’s foundation in Dropout, we include the
Dropout noise model [28] for comparison. To maintain consistency
across comparisons, all methods are adapted from the U-net architec-
ture.

As shown in Table 4, our quantitative analysis reveals that existing
methods demonstrate limited improvement in recall rate, precision
rate, and IoU. This finding indicates that evaluating noisy labels at the
image level is not sufficiently accurate, and addressing the inconsis-
tency in noisy labels is a significant challenge. Our qualitative analysis
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Fig. 5. Results of Ablation experiment. S1, S2, S3, and S4 are the results of original U-net, improved U-net based on PSBM, improved U-net based on PSBM and Bayesian inference,
and ours methods (improved by PSBM, Bayesian inference and Rough set based loss function).

Fig. 6. Results of comparative experiment. Comparative methods are original Unet [36], Dropout noise model [28], Pick-and-learn [16], ADL [15], Label Smoothing [34],
Noise-Robust Dice Loss [32] and ours methods.
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Table 4
Results of comparative experiments.

NEU-seg MCSD-seg LC-seg

Recall Precision IoU Recall Precision IoU Recall Precision IoU

U-net [36] 0.8845 0.8455 0.7581 0.8234 0.8590 0.7245 0.8572 0.8894 0.7688
Dropout noise model [28] 0.8755 0.8535 0.7587 0.8131 0.8760 0.7247 0.8051 0.9148 0.7444
Pick-and-learn [16] 0.8639 0.8633 0.7569 0.8427 0.8464 0.7314 0.8401 0.8643 0.7407
ADL [15] 0.8730 0.8556 0.7583 0.8203 0.8663 0.7214 0.8401 0.8888 0.7505
Label Smoothing [34] 0.8807 0.8318 0.7451 0.8416 0.8208 0.7095 0.8551 0.8041 0.7226
Noise-Robust Dice Loss [32] 0.8775 0.7812 0.7041 0.8375 0.8475 0.7216 0.8062 0.8116 0.6919
Ours 0.9350 0.9390 0.7670 0.8881 0.8978 0.7386 0.8978 0.9401 0.7825
Table 5
Results of comparative experiments.

NEU-seg MCSD-seg LC-seg

Recall Precision IoU Recall Precision IoU Recall Precision IoU

U-net [36] 0.8845 0.8455 0.7581 0.8234 0.8590 0.7245 0.8572 0.8894 0.7688
U-net Based BNNs 0.9350 0.9390 0.7670 0.8881 0.8978 0.7386 0.8978 0.9401 0.7825

PGA-Net [4] 0.8664 0.8710 0.7675 0.8526 0.8580 0.7381 0.9143 0.8458 0.7762
PGA-Net Based BNNs 0.8960 0.9013 0.7677 0.9019 0.8939 0.7514 0.9330 0.8524 0.7929

FCN [40] 0.8623 0.8567 0.7514 0.8582 0.8479 0.7393 0.8484 0.8761 0.7676
FCN Based BNNs 0.8936 0.8973 0.7473 0.8744 0.9169 0.7465 0.8587 0.9043 0.7804

SegNet [41] 0.8353 0.8684 0.7395 0.7744 0.8306 0.6628 0.8336 0.8807 0.7021
SegNet Based BNNs 0.9107 0.8945 0.7532 0.8552 0.8944 0.6858 0.8384 0.9013 0.7491

DeepLabV3+[42] 0.8791 0.8545 0.7651 0.8253 0.8662 0.7391 0.8579 0.8948 0.7300
DeepLabV3+ Based BNNs 0.9021 0.8971 0.7696 0.8642 0.8767 0.7358 0.8781 0.8955 0.7781

Lsa-Net [43] 0.8752 0.8771 0.7790 0.8427 0.8734 0.7514 0.8075 0.8611 0.7310
Lsa-Net Based BNNs 0.9320 0.9190 0.7868 0.8895 0.8926 0.7550 0.8673 0.9062 0.7411

A-Net [44] 0.8846 0.8408 0.7569 0.8481 0.8271 0.7219 0.8007 0.8678 0.7209
A-Net Based BNNs 0.8917 0.8620 0.7627 0.8644 0.8973 0.7302 0.8643 0.8989 0.7315
(Fig. 6) shows that our method achieves high recall and precision rates,
effectively minimizing both false positives and missed detections in
abnormal regions. Focusing on exploring and exploiting accurate and
consistent elements within noisy labels for model training proves more
efficient than attempting to evaluate and rectify the labels themselves.

4.6. Application experiments

To demonstrate the robustness and adaptability of our method, we
have transformed classic semantic segmentation models (U-net [36],
FCN [40], SegNet [41], and DeepLabV3+ [42]), as well as a clas-
sic surface defect detection model (PGA-Net [4], Lsa-Net [43], and
A-Net [44]), into Bayesian Neural Networks (BNNs). These transforma-
tions were tested on three datasets (NEU-seg, MCSD-seg, and LC-seg)
to verify their robustness.

As depicted in Table 5 and Figs. 7–9, the BNN-converted models
demonstrate an average improvement of 5.36%, 5.24%, and 1.74% in
recall rate, precision rate, and IoU, respectively, compared to their orig-
inal counterparts. These results highlight the significant enhancements
our method brings to both the accuracy and recall rate, as well as
the overall segmentation capability. Specifically, we observe two main
improvements: (1) Reductions in both false and missing detections. As
illustrated in Figs. 7–9, the probabilities are used to represent abnormal
regions, leading to substantial increases in the recall rate of the upper
approximation and the precision rate of the lower approximation.
(2) Demonstrated robustness in the pluggability of our method. We
have successfully applied our approach to five classic models across
three distinct datasets, showcasing its broad applicability to various
customized networks in surface defect detection.

4.7. PSBM application modes experiments

To validate the application modes of PSBM, we conducted experi-
ments focusing on its placement and frequency of use within the U-net
architecture. Seven comparative experimental groups were designed as
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Table 6
Results of PSBM application experiments.

Recall Precision IoU

U-net 0.8845 0.8455 0.7581
Encoder 0.9217 0.9248 0.7631
Decoder 0.9355 0.9171 0.7562
Center 0.9037 0.9044 0.7609
Classifier 0.6801 0.6725 0.6375
Center-encoder–decoder 0.9384 0.9179 0.7546
Center-encoder 0.9350 0.9390 0.7670

follows: (1) the original U-net; (2) PSBM applied to each layer of the
encoder; (3) PSBM applied to each layer of the decoder; (4) PSBM
applied to the center of U-net; (5) PSBM applied to the last layer
of U-net (Classifier layer); (6) PSBM applied to every layer of U-net,
including the center, encoder, and decoder; (7) PSBM applied to the
center and the last two layers of the encoder.

The results, as presented in Table 6, indicate that applying PSBM
to the encoder and the center layer significantly enhances the net-
work’s representation ability. The recall rate, precision rate, and IoU
achieved their best performance when PSBM was positioned in the
Center-encoder.

4.8. Real-time analysis

The integration of automated optical inspection in production lines
necessitates high real-time performance, necessitating models that are
both lightweight and rapid. To mimic a factory computer scenario, the
evaluation of BNN-SDD was carried out on a typical personal computer
setup, equipped with an NVIDIA GeForce GTX 1070 GPU (8G memory),
ensuring the feasibility of deploying our proposed method in an indus-
trial context. The software versions used in the experiments include:
Nvidia driver version 552.22, CUDA version 11.8, Cudnn version 9.1,
Python version 3.11.7, and Pytorch version 2.3.0.

We evaluated the processing time by continuously testing 180 im-

ages from the NEU-seg dataset and calculating the average time per
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Fig. 7. Results of Application examples for NEU-seg. Rows (a), (b), (c), (d), (e), (f) and (g) are the results of U-net based BNNs, PGA-Net Based BNNs, FCN Based BNNs, SegNet Based
BNNs, DeepLabV3+ Based BNNs, Lsa-Net Based BNNs and A-Net Based BNNs. The order of columns are the images, labels, results of original models, segmentation probabilities
of BNNs, lower approximations and upper approximations.
Table 7
Result of real-time example.

Original network BNNs

Parameters
(MB)

Times
(ms)

Parameters
(MB)

Times
(ms)

U-net [36] 31.41 4.38 31.40 4.87
PGA-net [4] 205.63 10.81 205.63 9.13
FCN [40] 44.71 4.26 44.71 4.71
SegNet [41] 117.77 5.66 112.32 6.10
DeepLabV3+ [42] 237.85 19.53 237.85 19.32
LSA-Net [43] 86.41 7.48 86.39 7.89
A-Net [44] 1.56 15.43 1.56 16.64

image for comparison. This approach mirrors the real-world operation
on a production line, where each image is taken and processed sequen-
tially. Although BNNs typically require 16 computations, we executed
these in parallel, achieving remarkable performance.

The results in Table 7 show that our method maintains real-time
performance with negligible differences in processing time and param-
eter size when compared to the original networks. This consistency
is crucial for applications requiring real-time defect detection. While
Table 7 focuses on real-time performance metrics, our method also
improves detection accuracy, as demonstrated in other sections of
10 
Table 8
Thresholds given by factory-standard in MCSD-seg.

Dataset Length (mm) Width (mm)

Tin color 1.5 1.5
Scratches 2.0 2.0
Indentations 0.80 0.30
Smudge 0.30 0.14

the paper (please refer to the results in Sections Section 4.6). These
improvements do not compromise the efficiency highlighted in Ta-
ble 7, thereby offering a balanced enhancement in both accuracy and
performance.

4.9. Application in the production line of motor commutator

Defect detection in motor commutators represents a typical scenario
for metal surface defect inspection. The MCSD-seg dataset used in this
study includes four types of defects: tin color, scratches, indentations,
and dirt. Industry-standard thresholds for defect determination are
detailed in Table 8. The images are sized at 256 × 256 pixels, with
a pixel equivalent of 0.014 mm∕pix.
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Fig. 8. Results of Application examples for MCSD-seg. Rows (a), (b), (c), (d), (e), (f) and (g) are the results of U-net based BNNs, PGA-Net Based BNNs, FCN Based BNNs,
SegNet Based BNNs, DeepLabV3+ Based BNNs, Lsa-Net Based BNNs and A-Net Based BNNs. The order of columns are the images, labels, results of original models, segmentation
probabilities of BNNs, lower approximations and upper approximations.
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Fig. 9. Results of Application examples for LC-seg. Rows (a), (b), (c), (d), (e), (f) and (g) are the results of U-net based BNNs, PGA-Net Based BNNs, FCN Based BNNs, SegNet Based
BNNs, DeepLabV3+ Based BNNs, Lsa-Net Based BNNs and A-Net Based BNNs. The order of columns are the images, labels, results of original models, segmentation probabilities
of BNNs, lower approximations and upper approximations.
Initially, using U-Net-based BNNs, we carried out model optimiza-
tion and inference to determine the segmentation probability for MCSD-
seg, depicted in row (b) of Fig. 10. Subsequently, applying formulas
(24) and (25), we calculated the confidence levels for each connected
region within these probabilities, as illustrated in row (c) of Fig. 10.
Red contour lines mark the anomaly regions of confidence that meet the
threshold criteria and are thus classified as defective. This confidence
score represents the likelihood of a connected region being a defect,
proving to be a valuable metric for both trustworthy defect judgment
and product classification.

5. Conclusion

In this paper, instead of correcting or filtering noisy labels, we
identify inaccurate information in noisy labels (suspicious regions in
images) as uncertain areas using Rough Set theory to provide pre-
cise lower and upper approximations. Additionally, we redesign the
loss function and introduce the PSBM. Our method significantly im-
proves defect detection without requiring extra labeling or architec-
tural changes, outperforming state-of-the-art techniques across multiple
datasets and enhancing various classic networks as a pluggable module.

Firstly, while no extra label information is needed, the accuracy
of upper and lower approximations in representing suspicious regions
12 
depends on the quality of the noisy labels, which must include both
over-labeling and under-labeling. Furthermore, the robustness to more
complex noise distributions, such as varying noise levels, remains un-
explored. Secondly, the redesigned Tversky-based loss function faces
challenges, including the complexity of parameter selection and the dif-
ficulty in finding the sensitivity balance point across different datasets.
Lastly, the Bayesian neural network employs the Monte Carlo integra-
tion method during training, which increases both computational cost
and time expenditure. Finally, our method is only applied to limited
scenarios, such as metal surfaces and optical chip surfaces, where
images have clear suspicious regions, like weak features or border
areas. The applicability of this approach to fields such as textiles and
medicine remains to be explored.

In future research, we plan to explore the applicability of our
method across varying levels of noise. First, our initial focus will be
on semi-supervised learning techniques, which integrate a small set
of labeled data with a larger set of unlabeled data during training.
This approach aims to decrease the model’s reliance on the quality
of noisy labels. Second, we will investigate active learning methods,
which aim to improve the quality of labels and models by selectively re-
labeling certain information. Furthermore, we will study the causes and
manifestations of noise labels in more surface defect detection scenarios
so that the method can be applied to more cases.



T. Niu et al. Applied Soft Computing 165 (2024) 112138 
Fig. 10. Results of Application in the production line of motor commutator. Row (a), (b), and (c) are the images, segmentation probabilities, and confidences.
6. Practical application and future usefulness

Our method can be directly integrated into existing defect detection
systems used in various industries without requiring significant mod-
ifications to the underlying architecture. Practitioners can utilize the
proposed method as follows: (1) Handling noisy labels: by identifying
and managing noisy labels using Rough Set theory, practitioners can
improve the accuracy of defect detection without needing to invest
in extensive re-labeling efforts. (2) Integration with existing systems:
the proposed PSBM can be added as a module to enhance the defect
detection capabilities of current systems. This modularity ensures ease
of adoption.

Potential uses of our methods for future studies: (1) Innovative
approaches for noisy labels: Different from any existing method, we
analyzed the causes of noisy labels in the surface defect detection
scenario and proposed a suspected area characterization method based
on rough sets. This provides a new approach to dealing with noisy
labels. (2) Providing ideas for other methods: For example, the size of
the uncertain area can reflect the noise level of the image label and
provide a judgment indicator for active learning to screen data and
re-label. (3) Comprehensive evaluations: our method can be used as
a benchmark to evaluate new noisy label defect detection approaches,
fostering the development of more accurate and efficient solutions.

By providing a practical, modular, and adaptable solution, our
method serves as a valuable tool for both practitioners dealing with
real-life problems and researchers aiming to advance the field of defect
detection.
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