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A B S T R A C T

This paper focus on surface defect segmentation uncertainty challenges that arise due to human errors and
biases in the data annotation process, particularly in ambiguous transition and weak feature areas. Firstly,
uncertain areas are defined, where it could not be unambiguously identified as defect or defect-free. Then a
scoring Bayesian neural network is proposed, using Bayesian neural computation to solve the segmentation
probability and provide an expression for uncertain areas. The variance of segmentation probability is utilized
to assess the quality of labels, thereby improving model performance. The approach is validated against
prevailing state-of-the-art methods on five datasets, demonstrating superior performance. This study provides
a crucial pathway for addressing human errors and biases in defect detection. The code is available at
https://github.com/ntongzhi/Scoring-BNNs.
. Introduction

Surface defect detection is a crucial component of the manufactur-
ng process, with widespread applications across numerous industries,
ncluding workpiece [1], flat steel [2], additive manufacturing [3],
nd 3C glass [4], among others. In recent years, Convolutional Neural
etworks (CNNs) have demonstrated remarkable advancements in the

ield of surface defect detection, significantly improving performance
tandards and establishing new benchmarks.

While deep learning models hold considerable potential, these data-
riven approaches have been found to reproduce, and in certain in-
tances, even amplify human errors and biases that are intrinsic to
he training dataset, particularly those introduced during the labeling
rocess [5,6]. This issue is pervasive, affecting not only natural and
edical imagery [7,8], but is notably severe in the sphere of surface
efect detection.

The task of annotation of surface defect segmentation confronts two
rimary challenges: (1) transition areas: in defect detection images,
onsidering the causes of defects like scratches or pollution, there is
nevitably an extensive transition area between the normal background
nd the anomalous foreground; (2) weak features areas: the issue of
nter-class similarity is prevalent in defect detection, making it chal-
enging to distinguish the background from the foreground. Moreover,
iven the irregular contours of defects and the possibility of some being
inute enough to evade detection during the labeling process, these
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weak features areas are particularly prone to being overlooked in the
labeling stage.

To compound this, the annotation of transition and weak features
areas are subject to a host of variables such as the fluctuating emotional
states of workers, differing judgment standards, and varied technical
skill levels, thereby causing inconsistent labeling outcomes. As illus-
trated in Fig. 1, the boundaries of certain areas are marked within a
limited range, others within an extensive range, while some areas are
disregarded altogether.

A variety of strategies have been proposed to learn from inconsistent
labels, incorporating methods based on Bayesian probabilities [9],
proxy labels [10], and ‘divide-and-rule’ approaches [7]. However, these
methods predominantly depend on multi-labels, which can prove to be
costly for defect detection. Furthermore, our focus should shift towards
labels at the pixel-level, as opposed to those at the image level.

In the realm of pixel-level labels, both SEAL [11] and STEAL [12]
enhance the delineation of semantic regions by explicitly accounting
for annotation inconsistencies during training, thereby leveraging prior
knowledge. SEAL reimagines the optimization of latent edge labels as a
problem of minimum-cost assignment in a bipartite graph, subsequently
adjusting labels during training guided by a biased Gaussian kernel and
a Markov prior. On the other hand, STEAL introduces a novel layer
and loss function that mandate the edge detector to predict a peak
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Fig. 1. The inconsistent labels. Inconsistent labels are given by general annotators, while highly experienced engineers provide the ground truth. Both are forms of human
annotation but vary in expertise and accuracy.
response along the normal direction of the edge, while concurrently
regularizing its direction. However, all these approaches operate under
the presumption of the existence of precise edges. In industrial inspec-
tions, owing to the origins of defects, transitional and weak features
areas are widespread. Therefore, the assumption of precise edges often
proves fallacious. Even some areas with weak features lack annotations.
Thus, simply focusing on label edges is not adequate.

The challenges posed by manual labeling are virtually unavoidable
due to the inevitable inconsistencies arising from the annotation pro-
cess. However, if these challenges are appropriately addressed, they can
often aid in resolving practical issues. In this paper, we argue that areas
characterized by transition and weak features cannot be unambiguously
identified as defect or defect-free, which means that these areas are
still uncertain. These uncertain areas embody all pixels that cannot be
definitively classified using existing features.

Nonetheless, traditional deep learning models designed for seg-
mentation fail to account for this inherent uncertainty [13]. While
Bayesian probability theory provides a mathematical tool to address
uncertainty areas, it typically imposes prohibitive computational costs.
Consequently, without modifying the model or its optimization, we
leverage Monte-Carlo dropout [14] as an approximation of Bayesian
inference over the network’s weights. This approach allows us to ap-
proximate the posterior distribution by drawing samples from the
Bernoulli distribution. We weigh and aggregate the results of multiple
samplings to generate a segmentation probability map. In this map,
areas with a probability of 0 are designated as normal, areas with a
probability of 1 as abnormal, and areas with a probability within (0, 1)
as uncertain areas.

The chief aim of this paper is to achieve defect detection without the
requirement for supplementary data and additional labels. Considering
the high costs related to image acquisition and annotation, labels
of mediocre consistency and even those tainted by noise should be
fully leveraged. Lower label quality equates to higher uncertainty in
Bayesian inference, which manifests as heightened variance. Therefore,
we propose Scoring Networks (SN) to assess label quality, using the
variance from multiple solutions of the Bayesian Neural Networks
(BNNs) as the labels for the SN.

In summary, the principal contributions of this paper can be delin-
eated as follows:

(1) We introduce an innovative uncertainty-centric framework that
generates segmentation probabilities, thereby providing a representa-
tion of uncertainty areas driven by inconsistent labeling.

(2) To fully exploit limited data and labels, we developed the
Score-BNN, which utilize the variance from multiple Bayesian Neural
Network solutions as an indicator of label quality, thereby enhancing
model performance.
2

(3) Our method was rigorously tested on five publicly accessible
datasets, exhibiting comparable or superior performance against estab-
lished state-of-the-art models, thereby confirming its effectiveness and
efficiency.

2. Related works

In this paper, Scoring Bayesian Neural Networks are introduced as
a novel approach for learning from inconsistent labels in surface defect
segmentation. Initially, the fundamental principles and construction
methodologies of Bayesian Neural Networks are revisited. This is fol-
lowed by an organized review of current directions in defect detection
research and an overview of the prevalent methods in the field.

2.1. Bayesian Neural Networks

In the realm of deep learning, BNNs [15] offer a probabilistic in-
terpretation of deep learning models by inferring distributions over the
models’ weights, typically aligning with Gaussian processes. However,
the abundance of parameters in these networks complicates the task
of modeling a distribution over the kernels, resulting in increased
computational demands.

Yarin [13] intriguingly established that employing dropout during
the training phase of neural networks can be interpreted as a Bayesian
approximation. This insight allows for the avoidance of increased com-
putational complexity or reduced test accuracy. In conjunction with
this, Yarin introduced a functional architecture for dropout CNNs [14].
In light of this, the training process of such networks is reinterpreted as
an approximate Bernoulli variational inference in BNNs. The evaluation
of these models is facilitated by approximating the predictive posterior,
a technique referred to as Monte Carlo dropout during the testing
phase. Supporting this probabilistic paradigm in deep learning, Alex
unveiled the Bayesian SegNet framework [16]. This innovative struc-
ture enables probabilistic pixel-wise semantic segmentation, extending
beyond the capacities of conventional deep learning models.

Inspired by the aforementioned principles, DropBlock [17] is uti-
lized to construct a Spatial Correlated Bayesian CNN Block, approximat-
ing the Bernoulli distribution. This construct is embedded within the
U-Net [18] architecture to establish Scoring BNNs. During the testing
phase, segmentation probabilities are derived through Monte Carlo
dropout.
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Fig. 2. The architecture of our proposed Scoring Bayesian Neural Networks for Surface Defects Segmentation.
2.2. Background of surface defect detection

Surface defect detection plays a crucial role in maintaining product
quality and process control across diverse manufacturing industries,
including automotive parts production and semiconductor fabrication,
among others. Given its significance, deep learning-based methods have
become a focal point of extensive research [1–4].

Yet, these methods are not without their challenges. A significant
impediment is the requirement for extensive labeled datasets, which
are often cumbersome and expensive to compile in the field of sur-
face defect detection. This has catalyzed a wave of research centered
around data augmentation [19], anomaly detection [20], and domain
generalization [21,22].

Techniques like Generative Adversarial Networks (GANs), Varia-
tional Autoencoders (VAEs), and Diffusion Models are employed in
data augmentation to extrapolate a broader, richer data distribution
from limited datasets. These methods enhance data diversity, ampli-
fying the model’s grasp of potential data representations. Anomaly
detection strategies capitalize on the ease of gathering positive (non-
defective) samples to create a distribution model of positive sample
features using reconstructive or feature embedding models, making
defect identification more straightforward. In essence, by delineating
the ‘normal’ data representation, anomalies or defects are rendered
more detectable. Domain adaptation techniques, on the other hand,
offer a solution to the adaptation challenges posed by varying types,
batches, and data distributions, without the need for exhaustive data
collection or labeling for every new task.

Although the issues pertaining to the data itself have been exten-
sively studied, there has been limited research on labels. In this paper,
the focus is placed on inconsistent labels resulting from human errors
and biases. The causes behind these inconsistent labels are meticulously
analyzed. Based on these insights, an uncertainty-centric framework
is proposed, which generates segmentation probabilities by harnessing
uncertainty quantification to enhance the reliability and robustness of
surface defect detection.
3

3. Proposed approach

3.1. Overview

The architecture of the proposed Scoring Bayesian Neural Net-
works for Surface Defect Detection (Score-BNN) is characterized by two
distinct phases: training and testing, as illustrated in Fig. 2.

In the training phase, we feed the input to the Bayesian Neural
Network (BNN) 𝑁 times to generate 𝑁 unique segmentation results
(Seg). These results are subsequently compared with the label to derive
the segmentation errors (Seg error). Concurrently, we employ the Scor-
ing Networks (SN) to evaluate the label’s score (Score), which requires
the concatenation of the input and label as its input. The scoring loss
(𝐿𝑜𝑠𝑠𝑠𝑐𝑜𝑟𝑒) is calculated as the variance of the Seg error (Var) minus the
Score, and is utilized to back-propagate the SN. The segmentation loss
(𝐿𝑜𝑠𝑠𝑠𝑒𝑔) is computed as the product of the Score and the mean of the
Seg error (Mean), and serves to back-propagate both the SN and BNN.

In the testing phase, the BNN is run 𝑁 times with the same input,
yielding multiple distinct segmentation results (Seg). The SN is then
utilized to compute the Seg score from the concatenation of Seg and
the input. Each Seg is subsequently weighted by its corresponding Seg
score, and the results are aggregated to yield the final segmentation
probability.

3.2. Bayesian Neural Networks for surface defects detection

3.2.1. Probabilistic modeling
Given the training inputs {𝑥1,… , 𝑥𝑁} and corresponding labels

{𝑦1,… , 𝑦𝑁}, our goal is to estimate a function 𝑦 = 𝑓 (𝑥). In the Bayesian
approach, we impose a prior distribution over the function space,
denoted as 𝑝(𝑓 ). Subsequently, we seek the posterior distribution over
the same space conditioned on our dataset, i.e., 𝑝(𝑓 ∣ 𝑋, 𝑌 ).

In the context of Bayesian neural networks, our primary interest
lies in discovering the posterior distribution over the convolutional
weights.

𝐼 (1)
𝑤 = (𝑊𝑖)𝑖=1
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Fig. 3. Spatially correlated Bayesian CNN block. (a) is the original CNN block, (b) is
the spatially correlated Bayesian CNN block.

where 𝑊𝑖 represents the weights of the 𝑖th layer in the convolutional
network. However, the distribution 𝑝(𝑤 ∣ 𝑋, 𝑌 ) is not analytically
tractable. Consequently, we define an approximation variational distri-
bution 𝑞(𝑤) to approximate 𝑝(𝑤). Inspired by [14], we employ Gaussian
prior distributions to approximate 𝑞(𝑤). Subsequently, the Gaussian
process can be approximated using Bernoulli-distributed random vari-
ables with dropout probabilities 𝑏𝑖,𝑗 and variational parameters of the
CNN’s kernels, 𝐾𝑖. Here, 𝑏𝑖,𝑗 is the dropout probability of the 𝑗th neuron
in the 𝑖th layer of the network, while 𝐾𝑖 is the convolutional kernel of
the 𝑖th layer of the network. Consequently, 𝑞(𝑊𝑖) is defined for every
layer 𝑖 as follows:

𝑊𝑖 = 𝐾𝑖 ⋅ 𝑑𝑖𝑎𝑔([𝑏𝑖,𝑗 ]𝐽𝑗=1)

𝑏𝑖,𝑗 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖)𝑓𝑜𝑟 𝑖 = 1,… , 𝐼, 𝑗 = 1,… , 𝐽
(2)

The operator 𝑑𝑖𝑎𝑔(⋅) transforms vectors into diagonal matrices
whose elements originate from the vector. 𝑝𝑖 signifies a fixed Bernoulli
distribution probability, generally set at 𝑝𝑖 = 0.5. The network com-
prises 𝐼 layers in total, each containing 𝐽 neurons.

In networks inference, we approximate the integral with Monte
Carlo integrations:

𝑝(𝑦∗|𝑥∗, 𝑋, 𝑌 ) ≈ 1
𝑇

𝑇
∑

𝑡=1
𝑓 (𝑥∗, 𝑤̂𝑡) (3)

where 𝑥∗ and 𝑦∗ are the input and output in test set, and 𝑤̂𝑡 ∼ 𝑞(𝑤). 𝑇
is a hyperparameter used to balance the accuracy of calculation results
and computational overhead.

3.3. Spatially correlated Bayesian CNN block

Dropout is implemented following convolution layers in numerous
approaches to create Bayesian neural networks [13,16,23]. However,
due to the spatial correlation of convolutional layers, the efficacy of
dropout tends to diminish. Motivated by DropBlock [17], we propose
a spatially correlated Bayesian CNN block.

Initially, batch normalization is substituted with dropout in the
CNN block. A standard CNN block is composed of a convolution,
batch normalization, and an activation function. According to Eq. (2),
dropout should be applied post-convolution to enable the formation
of a Bayesian CNN block. However, merging the potent techniques of
Dropout and Batch Normalization can, at times, lead to a decrement in
4

Fig. 4. Activation map of varying dropout results in the NEU-Seg dataset.

performance [24]. Consequently, batch normalization is replaced with
dropout, giving rise to the basic architecture of the Bayesian CNN block.
This revised structure encompasses a convolution, followed by dropout,
and culminating with an activation function, as illustrated in Fig. 3.

Following that, the influence of diverse dropout structures on CNN
is examined. Standard dropout operates by selectively disabling specific
features. However, when these features are correlated, the exclusion via
dropout does not wholly eliminate the input information, resulting in a
prior loss of variance. This paper introduces DropBlock that operates by
disabling entire blocks of pixels, as illustrated in Fig. 4. An activation
map is utilized to visualize the activations of the convolutional layer
before the initial up-sampling in the BNN. Typically, models that are
trained using a spatially correlated Bayesian CNN block are adept at
learning spatially distributed representations, leading to heightened
activations in precise regions. In contrast, models lacking adequate
regularization are prone to concentrating on broader, less accurate
regions.

3.4. Networks design

The overall structure of our network, as demonstrated in Fig. 2, is
designed based on U-Net [18]. This model performs optimally on the
majority of defect detection datasets, as evidenced in Table 3 4 5 6 7.
This performance can potentially be attributed to the relatively fixed
structure of industrial images and the simplicity of their semantics,
wherein low-level features hold comparable importance to high-level
ones.

In practice, excessive regularization may inhibit the speed of net-
work learning. With partial Bayesian CNN blocks, however, we can
realize a Bayesian CNN. Thus, we explore the optimal quantity and
placement for the Bayesian CNN block. As shown in Table 2, In-
tersection over Union (IoU) and Pixel Accuracy (PA) are maximized
when the Bayesian CNN block is positioned in the last two layers
of the encoder and in the central layer. These findings indicate that
applying the Bayesian CNN block to the lower layers does not yield
superior performance. Low-level features such as edges and corners are
consistent across the distribution of models, whereas high-level features
like shape and context are more effectively modeled with the Bayesian
CNN block. Furthermore, the decoder maps the latent representation
to a semantic segmentation result, taking into account both high-level
and low-level information.

3.5. Scoring networks

3.5.1. Motivation
In the training phase, we employ SN where labels of higher quality

are assigned higher scores. Through a weighted contribution mecha-
nism, these high-quality labels play a more substantial role in training
the model, leading to enhanced robustness.
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During the testing phase, the challenge of inconsistency extends to
the segmentation results derived from BNNs. A simplistic averaging
method in this scenario would exacerbate uncertainty. Counteracting
this, the SN network appraises and assigns weights to the segmentation
outputs, prioritizing those of higher quality and fostering the extraction
of higher quality segmentation probabilities.

3.5.2. Methodology
During the training process, different levels of inconsistency among

annotations may exhibit varying rates of loss descent. Upon train-
ing completion, the predicted segmentations for the inconsistent la-
bels could present a higher uncertainty loss in comparison with well-
annotated ones. In this context, we postulate that a larger variance in
segmentation error corresponds to greater label inconsistency.

As depicted in Fig. 2, during the training phase, the mean of segmen-
tation errors is reweighted by the Scores, computed by the Scoring Net-
work (SN) using the concatenation of inputs and labels. The Bayesian
Neural Network (BNN) then backpropagates based on the reweighted
loss 𝐿𝑜𝑠𝑠𝑠𝑒𝑔 , prioritizing those with higher uncertainty, while the SN
backpropagates based on both 𝐿𝑜𝑠𝑠𝑠𝑐𝑜𝑟𝑒 (the difference between the
core and the variance of segmentation errors) and 𝐿𝑜𝑠𝑠𝑠𝑒𝑔 .

The design of the SN is based on the encoder of the BNN, excluding
he Bayesian NN block. In the final layers, we incorporate a global
verage pooling operation to obtain the score for each input in a mini-
atch. To circumvent potential overfitting, which could result in an
xcessively large or small score, we introduce the activation function
anh after the final layer, constraining the score within the range
f [−1, 1]. Following processing by the softmax layer, the maximum
ossible ratio of two scores within the same mini-batch is confined to
he range [𝑒2,∞].

.6. Training mechanism

Let us denote the training set samples as
{

𝑥1,… , 𝑥𝑁
}

, with their cor-
responding annotations represented by

{

𝑦1,… , 𝑦𝑁
}

. The segmentations
of the 𝑖th sample in the training set, computed 𝑀 times by the Bayesian

eural Network (BNN), are designated as
{

𝑦̂1,… , 𝑦̂𝑀
}

. Additionally,
he scores of the annotations, calculated by the Scoring Network (SN),
re represented by

{

𝑠1,… , 𝑠𝑁
}

.
In the realm of defect detection, the background area typically

reatly surpasses the defect area in size. As a remedy to this imbalance,
e utilize a combination of Binary Cross Entropy (BCE) loss and Dice

oefficient (Dice) loss functions:

𝑐𝑒𝐿𝑜𝑠𝑠𝑗𝑖 = −𝑦𝑖 ⋅ 𝑙𝑜𝑔
(

𝑦̂𝑗𝑖
)

−
(

1 − 𝑦𝑖
)

⋅ 𝑙𝑜𝑔
(

1 − 𝑦̂𝑗𝑖
)

(4)

𝑖𝑐𝑒𝐿𝑜𝑠𝑠𝑗𝑖 = 1 − 2 ⋅
|

|

|

|

𝑉𝑦𝑖
⋂

𝑉𝑦̂𝑗𝑖
|

|

|

|

∕
(

|

|

|

𝑉𝑦𝑖
|

|

|

+
|

|

|

|

𝑉𝑦̂𝑗𝑖
|

|

|

|

)

(5)

𝑜𝑠𝑠𝑗𝑖 = 𝜆𝐵𝑐𝑒𝐿𝑜𝑠𝑠𝑗𝑖 +𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠𝑗𝑖 (6)

In the aforementioned equation, 𝑉 represents the segmented area
f the samples, while 𝜆 > 0 acts as a hyperparameter balancing the
elative significance of the two components, namely the BCE and Dice
osses.

Subsequently, the mean and variance of the loss (𝐿𝑜𝑠𝑠) are com-
uted as follows:

𝑒𝑎𝑛𝑖 =
1
𝑀

𝑀
∑

𝑗=1
𝐿𝑜𝑠𝑠𝑗𝑖 (7)

𝑉 𝑎𝑟𝑖 =
1
𝑀

𝑀
∑

𝑗=1

(

𝐿𝑜𝑠𝑠𝑗𝑖 −𝑀𝑒𝑎𝑛𝑖
)

(8)

Hence, the loss associated with segmentation is computed as:

𝐿𝑜𝑠𝑠𝑠𝑒𝑔 =
𝑁
∑

𝑠𝑖 ⋅𝑀𝑒𝑎𝑛𝑖 (9)
5

𝑖=1
Extending this, we establish the label for the score as follows:

𝑙𝑠𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
(

− 𝑒−𝜆̂⋅𝑉 𝑎𝑟𝑖

1 + 𝑒−𝜆̂⋅𝑉 𝑎𝑟𝑖

)

, 𝑖 = 1,… , 𝑁 (10)

here 𝜆̂ serves as a hyperparameter designed to adjust for variance.
Finally, the score loss is defined as:

𝑜𝑠𝑠𝑠𝑐𝑜𝑟𝑒 =
1
𝑁

𝑁
∑

𝑖=1
−𝑙𝑠𝑖 ⋅ 𝑙𝑜𝑔(𝑠𝑖) − (1 − 𝑙𝑠𝑖) ⋅ 𝑙𝑜𝑔(1 − 𝑠𝑖) (11)

.7. Sematic segmentation probability

Finally, we approximate the semantic segmentation probability uti-
izing Monte Carlo integrations. As illustrated in Fig. 2, a sample from
he testing set is denoted by 𝑥∗.

{

𝑦∗𝑖 ,… , 𝑦∗𝑘
}

represents the segmentation
f 𝑥∗ calculated 𝐾 times by the BNN, while 𝑠∗𝑘 is computed by the SN
ia the concatenation of 𝑦∗𝑘 and 𝑥∗. Following Eq. (3), the probability
s determined as:

(𝑥∗) ≈
𝐾
∑

𝑘=1
𝑠∗𝑘 ⋅ 𝑦

∗
𝑘 (12)

. Experiments and results

.1. Implementation details

.1.1. Parameters setting
The model is based on VGG Block, with each VGG Block con-

isting of two 3 × 3 convolutions. After each convolution operation,
atch normalization is used for regularization, and the ReLU activa-
ion function is employed to introduce non-linearity. Downsampling
s achieved using 2 × 2 max pooling, while upsampling employs 2×
ilinear interpolation. The BNN network undergoes 4 downsampling
nd 4 upsampling processes. The SN network also goes through 4
ownsampling processes. The mini-batch size is consistently set at 4. In
he BNN, the initial learning rate is established at 0.003 and is designed
o decrease at a rate of 0.0001. Conversely, the SN operates with a
earning rate of 0.000001. Furthermore, the Dropout probability is set
t 50%.

.1.2. Computation platform
Our implementation of Score-BNN is constructed in the PyCharm

nvironment, leveraging the open-source Pytorch toolkit. The model’s
raining is carried out on a high-performance server, outfitted with an
VIDIA Tesla A100 GPU (boasting 40 GB memory) and operating on a
entOS 8 Linux system. Moreover, to ensure the practical applicability
f our method in industrial settings, we assessed its performance on an
conomical, low-computational-power PC setup equipped with a GTX
070 GPU, boasting 8 GB of memory.

.2. Dataset

In this study, we have selected five datasets to examine the applica-
ility and generalizability of our proposed method. These datasets en-
ompass three benchmarks: NEU-Seg [25], MTDD [26] defect dataset,
nd KSDD [27] defect dataset. Additionally, we included two datasets
erived from real industrial production lines: MCSD-Seg [20], which
ocuses on motor commutators, and WDD, which is dedicated to wafers.

.3. Evaluation metrics

To assess the segmentation capability, we employ intersection-over-
nion (IoU) and pixel-accuracy (PA) as performance metrics, using
hem to compare with other segmentation methods. To manifest the
etwork’s capacity for modeling uncertainty, we utilize a lower ap-
roximation for accuracy computation and an upper approximation for
ecall rate calculation. Ultimately, we adopt F1-Score, a measure that
ombines both accuracy and recall rate.
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Fig. 5. The convergence performance of BNNs and SN.
Table 1
Performance results of various module on the NEU-Seg Dataset.

CNN Bayesian CNN block Score net IoU PA

s1
√

0.7590 0.9676
s2

√ √

0.7693 0.9693
s3

√ √

0.7570 0.9670
s4

√ √ √

0.7771 0.9696

4.4. Convergence performance

In this section, we evaluate the convergence performance of BNNs
and SN utilizing the NEU-Seg dataset. We plot the loss value trajectory
over the training epochs to visualize the model’s convergence pattern,
as shown in Fig. 5.

The BNNs loss curve showcases a systematic decline, marked by a
consistent and smooth trajectory, punctuated by a gradually deceler-
ating rate of decrease. This behavior is indicative of an efficient con-
vergence performance, aligning seamlessly with the expected pattern
associated with a reducing learning rate.

Conversely, the SN convergence trajectory, though characterized by
noticeable fluctuations, underscores an overarching downward trend,
attesting to its effective convergence. The slight decrease in the SN
curve is associated with its fitting task and is reasonable, given its
learning rate is set at a mere 0.000001 — three orders of magnitude
lower than the BNN’s learning rate of 0.003.

An initial upward spike in the SN curve is observable, a phe-
nomenon we attribute to the restrictive labels generated from the
variance of the BNNs during the early training stages. This ascent is in-
herently linked to the BNNs’ initial performance constraints. However,
a transition occurs as the BNNs’ performance plateaus; correspondingly,
the SN curve embarks on a consistent downward trajectory, under-
scoring a harmonious interplay between the convergences of the two
models.

4.5. Ablative study

4.5.1. An ablation study of various modules
In order to validate the effectiveness of each module in our proposed

method, we conduct a series of ablation studies. Initially, we utilize
CNN networks devoid of the Bayesian CNN block and SN as a control
group. Following this, we deploy the combination of CNN and SN
to ascertain the efficacy of the SN. The combination of CNN and
Bayesian CNN block is utilized to verify the potency of the Bayesian
6

Table 2
Performance results of diverse architectural variants on the NEU-Seg Dataset.

IoU PA

s1 No Dropout 0.7570 0.9670
s2 Dropout Encoder 0.7559 0.9674
s3 Dropout Decoder 0.5373 0.9343
s4 Dropout Center 0.7617 0.9676
s5 Dropout Classifier 0.6538 0.9511
s6 Dropout Central Enc-Dec 0.7733 0.9691
s7 Dropout Central Enc 0.7771 0.9696

CNN block. Finally, the amalgamation of all three elements constitutes
our network.

As demonstrated in Table 1, the IoU of the Bayesian CNN block im-
proves by 1.03% in comparison to the control group, and our proposed
method further enhances it by 0.78% on this basis. Conversely, it can be
observed that the standalone SN incurs almost no improvement. Based
on our analysis, the SN operates in concert with the Bayesian neural
network, functioning under the precondition of variance in multiple
solutions.

4.5.2. Various architectural variants
In an effort to substantiate the assertions made in Section 3.4,

we assessed the performance of the Bayesian CNN Block in various
positions while maintaining constant network structure and dataset.
As shown in Tabel 2, scenarios included no Dropout (s1), presence of
Dropout only in the Encoder section (s2), Decoder section (s3), center
section (s4), final classification operation (s5), center and the two layers
of Encoder and Decoder near the center (s6), and finally, center and two
layers of Encoder proximal to the center (s7).

The results revealed a detrimental effect of Dropout on the Decoder
part and classification operation. However, positive influences were
evident in the Encoder and center sections, with the latter demonstrat-
ing a stronger effect. This corroborates our stance that the Bayesian
operation exhibits superior performance in the high-level feature layer.
Ultimately, the most optimal effect was observed when the Bayesian op-
eration was applied at the center layer and the Encoder layer adjacent
to the center, achieving an IoU of 77.71%.

4.6. Comparison results with state-of-the-art methods on five datasets

Initially, we juxtapose our method with Bayes-SegNet [16] (2015),
a semantic segmentation model premised on Bayesian neural net-
works. Following that, we compare our methodology with conventional
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Fig. 6. Visualization results on the NEU-Seg dataset.
Table 3
Comparison results on NEU-Seg datasets.

Methods IoU PA F1

U-Net (2015) 0.7590 0.9696 0.8659
SegNet (2017) 0.7241 0.9613 0.8421
FCN (2015) 0.7372 0.9646 0.8490
PSPNet (2017) 0.6453 0.9524 0.7799
RefineNet (2017) 0.5600 0.9124 0.7355
DeepLabv3+ (2017) 0.7350 0.9643 0.8906
PGANet (2019) 0.7517 0.9668 0.8620
CCNet (2019) 0.6292 0.9503 0.7557
TopFormer (2022) 0.7315 0.9625 0.8363
Swin UNet (2023) 0.7005 0.9578 0.8151
LSA-Net (2023) 0.7595 0.9665 0.8568
Bayes-SegNet (2015) 0.7477 0.9650 0.9168
Ours 0.7771 0.9696 0.9329

semantic segmentation models, including U-Net (2015) [18], Seg-
Net (2017) [28], FCN (2015) [29], PSPNet (2017) [30], RefineNet
(2017) [31], Deeplab (2017) [32], PGANet (2019) [33], CCNet (2019)
[34], TopFormer (2022) [35], Swin UNet (2023) [36], and LSA-Net
(2023) [37]. For a clearer visual comparison, the final semantic seg-
mentation results are presented as heat maps.

4.6.1. Results on NEU-Seg dataset
The visual comparison between our approach and other methods

for NEU-Seg images is illustrated in Fig. 6. Due to the complexities
in hot-rolled conditions, some of the inclusion defects (row 1–2) and
the patches defects (row 6–7) exhibit discernible gradual regions at the
boundaries, and the scratches defects (row 3–5) contrast poorly with
the background. Consequently, in the inconsistent labels, some defects
are not annotated, while some boundaries are inaccurate. Evidently,
our method outperforms the others. Score-BNN not only segments out
the unlabeled parts of the image but also illustrates the transitional
regions probabilistically. As demonstrated by the quantitative compar-
isons in Table 3, our approach exceeds existing methods in all three
metrics, improving the IoU value to 77.71%.

4.6.2. Results on MTDD
As depicted in Fig. 7, due to the variability of defect shapes and

the randomness of lighting conditions, defects in the corners (row 1,
3), very small defects (row 2), and suspected defects (row 4) are not
annotated. It can be observed that the performance of our method
more closely approximates the real scenario. As outlined in Table 4,
our method enhances the IoU value to 75.73%.
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Table 4
Comparison results on MTDD datasets.

Methods IoU PA F1

U-Net (2015) 0.7358 0.9748 0.8548
SegNet (2017) 0.6614 0.9739 0.8028
FCN (2015) 0.7144 0.9821 0.8363
PSPNet (2017) 0.5463 0.9745 0.7002
RefineNet (2017) 0.0982 0.8832 0.3723
DeepLabv3+ (2017) 0.7286 0.9802 0.8468
PGANet (2019) 0.7165 0.9818 0.8182
CCNet (2019) 0.5734 0.9786 0.7019
TopFormer (2022) 0.6648 0.9739 0.7611
Swin UNet (2023) 0.0877 0.8338 0.2459
LSA-Net (2023) 0.7105 0.9694 0.8080
Bayes-SegNet (2015) 0.7211 0.9770 0.9112
Ours 0.7573 0.9796 0.8965

Table 5
Comparison results on KSDD datasets.

Methods IoU PA F1

U-Net (2015) 0.8970 0.9988 0.9463
SegNet (2017) 0.8756 0.9985 0.9334
FCN (2015) 0.8350 0.9980 0.9116
PSPNet (2017) 0.4946 0.9910 0.6661
RefineNet (2017) 0.6655 0.9956 0.8024
DeepLabv3+ (2017) 0.4668 0.9937 0.6531
PGANet (2019) 0.7859 0.9969 0.8780
CCNet (2019) 0.4915 0.9908 0.6501
TopFormer (2022) 0.8040 0.9976 0.8873
Swin UNet (2023) 0.7873 0.9974 0.8704
LSA-Net (2023) 0.8999 0.9989 0.9450
Bayes-SegNet (2015) 0.8818 0.9986 0.9620
Ours 0.9197 0.9991 0.9621

4.6.3. Results on KSDD
Fig. 8 displays a visual comparison of partial KSDD defect image

detection results. The primary challenge with this dataset lies in the
very small size of the defective samples, albeit the annotations are
almost consistent. Nevertheless, it can be observed that our results bear
a strong resemblance to the labels. Also, certain suspected areas have
been marked in rows 3–4. As detailed in Table 5, we have managed to
elevate the IoU value to 91.97%.

4.6.4. Results on MCSD-Seg
Fig. 9 showcases a portion of the MCSD-Seg results and the corre-

sponding predictions. As the surface of the motor commutator images
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Fig. 7. Visualization results on the MTDD dataset.
Fig. 8. Visualization results on the KSDD dataset.
Fig. 9. Visualization results on the MCSD-Seg dataset.
Table 6
Comparison results on MCSD-Seg datasets.

Methods IoU PA F1

U-Net (2015) 0.8336 0.9923 0.9058
SegNet (2017) 0.7347 0.9911 0.8512
FCN (2015) 0.8194 0.9918 0.8889
PSPNet (2017) 0.7948 0.9895 0.8807
RefineNet (2017) 0.6179 0.9867 0.7810
DeepLabv3+ (2017) 0.8537 0.9932 0.9141
PGANet (2019) 0.7611 0.9882 0.8471
CCNet (2019) 0.7253 0.9868 0.7968
TopFormer (2022) 0.7992 0.9891 0.8585
Swin UNet (2023) 0.6911 0.9892 0.7556
LSA-Net (2023) 0.8439 0.9930 0.8954
Bayes-SegNet (2015) 0.8361 0.9922 0.9449
Ours 0.8558 0.9931 0.9456

is curved, it leads to uneven illumination, making some defects appear
with low contrast against the background, and brightening some areas.
It can be discerned that BNN-SDD sensitively detects the suspicious
sections of the image, and its contours align more closely with the
actual situation. As indicated in Table 6, the IoU value has been
elevated to 85.58%, with PA and F1-Score also delivering superior
performance.
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4.6.5. Results on WDD
Fig. 10 depicts the WDD, wherein the background exhibits dense

intersecting lines of varying shapes. These lines mingle with defects,
creating noise that hinders inspection. Concurrently, these defects are
small in size, possess a diversity of shapes, and some have indistinct
features with low contrast. Nevertheless, the WDD is annotated by
professional wafer inspection engineers, providing high-quality labels.
Hence, this serves as a control group to underscore that our method
demonstrates potent semantic segmentation in high-quality datasets.
Consequently, as shown in Table 7, the IoU is amplified to 91.09%.

4.7. Scalability experiments on scoring Bayesian networks

To validate the effectiveness of the proposed method on other
segmentation models, we conducted experiments on several classic
networks including SegNet [28], FCN [29], DeepLabV3+[32], PSP-
Net [30], and RefineNet [31] on the NEU-seg dataset.

Our findings, detailed in Table 8, indicate a consistent improvement
in performance metrics including IoU, PA, and F1 when our Scoring
Bayesian segmentation model is applied. This is demonstrative of the
method’s adaptability and effectiveness across a diverse array of seg-
mentation models, evidencing its scalable nature. Specifically, models
like U-Net, SegNet, and DeepLabV3+ witnessed a 1%–2% uptick in IoU.
The marginal improvement observed in FCN and PSPNet can likely
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Fig. 10. Visualization results on the WDD dataset.
Table 7
Comparison results on WDD datasets.

Methods IoU PA F1

U-Net (2015) 0.8213 0.9999 0.9049
SegNet (2017) 0.8604 0.9999 0.9272
FCN (2015) 0.0698 0.9995 0.1305
PSPNet (2017) 0.2929 0.9993 0.5720
RefineNet (2017) 0.0698 0.9995 0.1305
DeepLabv3+ (2017) 0.7211 0.9999 0.8365
PGANet (2019) 0.6733 0.9999 0.7894
CCNet (2019) 0.3242 0.9991 0.4698
TopFormer (2022) 0.8143 0.9999 0.8877
Swin UNet (2023) 0.7810 0.9999 0.8569
LSA-Net (2023) 0.8475 0.9999 0.9091
Bayes-SegNet (2015) 0.7572 0.9999 0.9084
Ours 0.9109 1.0000 0.9558

Table 8
Quantitative comparison in scalability experiments.

Methods IoU PA F1

U-Net (2015) 0.7590 0.9696 0.8659
Scoring Bayesian U-Net (Ours) 0.7771 0.9696 0.9329

SegNet (2017) 0.7241 0.9613 0.8421
Scoring Bayesian SegNet 0.7441 0.9657 0.9090

FCN (2015) 0.7372 0.9646 0.8490
Scoring Bayesian FCN 0.7414 0.9647 0.8965

PSPNet (2017) 0.6453 0.9524 0.7799
Scoring Bayesian PSPNet 0.6460 0.9513 0.8098

RefineNet (2017) 0.5600 0.9124 0.7355
Scoring Bayesian RefineNet 0.7431 0.9651 0.8635

DeepLabv3+ (2017) 0.7350 0.9643 0.8906
Scoring Bayesian DeepLabv3+ 0.7498 0.9661 0.8949

be attributed to the intrinsic network structures and how the spatially
correlated Bayesian CNN block is integrated within these networks.
Further investigations in optimizing this integration could potentially
unlock more pronounced improvements. RefineNet, on the other hand,
manifested significant enhancement, an outcome we attribute to the
ameliorated convergence facilitated by our method, addressing the
original model’s convergence inadequacies.

Visual insights from Fig. 11 corroborate these quantitative findings.
The refined segmentation probability maps for U-Net, SegNet, and
DeepLabv3+ obtained via our method exhibit enhanced alignment with
actual defect scenarios, attesting to the method’s efficacy. The perfor-
mance increment is relatively subdued for FCN and PSPNet, marked
by less precise segmentation in areas of uncertainty. In the context of
RefineNet, our Scoring Bayesian approach not only refines the contours
in the segmentation results but also offers a more nuanced, restrained,
and accurate representation of uncertain areas, mitigating the original
method’s overemphasis in these regions.
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Table 9
Computational efficiency analysis.

Methods Times (ms) Model size (MB)

U-Net (2015) 7.47 29.96
SegNet (2017) 9.29 112.32
FCN (2015) 7.62 85.27
PSPNet (2017) 14.21 177.70
RefineNet (2017) 33.14 450.16
DeepLabV3+ (2017) 24.23 226.37
PGANet (2019) 19.07 198.36
CCNet (2019) 47.08 259.47
TopFormer (2022) 20.29 11.43
Swin UNet (2023) 23.50 103.55
LSA-Net (2023) 15.48 92.54
Bayes-SegNet (2015) 11.89 112.32
Ours 14.90 47.93

4.8. Computational efficiency study

To our knowledge, the demands of automated optical inspection
are stringent, requiring exceptional real-time performance. In light of
this, we have assessed the computational efficiency of our model on a
conventional personal computer setup. The number of calculations by
BNN is set at 𝑀 = 16. As delineated in Table 9, our model distinguishes
itself by being both compact (with a model size of 47.93 MB) and
highly computationally efficient, processing images at a rate of 14.90
ms/image. These attributes underscore its significant competitive edge
over prevailing methods.

5. Conclusion and future work

In this paper, we have introduced the Scoring Bayesian Neural
Networks for Surface Defect Detection (Score-BNN), a novel framework
that explicitly addresses the challenge of inconsistent labeling in surface
defect detection. Our approach leverages the concept of uncertainty
derived from Bayesian Neural Networks to generate probabilistic, pixel-
wise segmentation, effectively overcoming the biases and errors often
embedded within the labeling process.

Our method capitalizes on inconsistencies in the labeling process,
viewing them as indicators of inherent uncertainties rather than as
mere noise. The proposed Scoring Networks (SN) use variance from
multiple solutions of the Bayesian Neural Networks as an innovative
measure of label quality, facilitating better utilization of available data
and improving overall detection performance. Our extensive exper-
iments on five publicly available datasets validated the superiority
of our approach over state-of-the-art methods. The results demon-
strated robustness and adaptability to real-world industrial surface
defect detection tasks.

In conclusion, this research highlights the potential of embracing
uncertainty and label quality considerations in the development of
more robust and reliable deep learning models for surface defect detec-
tion. The methodologies we have proposed provide significant insights
that will contribute to advancements in the field.
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Fig. 11. Visualization results of Scalability experiments.
In future work, we intend to investigate the inconsistencies in label-
ing attributed to imaging-related challenges, notably uneven lighting
and defocus blur. These issues are known to induce gradual textural
transitions, which in turn manifest as transition areas and weak feature
regions in the imagery. Our approach will encompass a hardware-
centric methodology, wherein we aim to capture and analyze images
of identical workpieces under varied lighting conditions, including but
not limited to low ring light and coaxial light settings. By conducting a
comparative analysis of features extracted from these diverse imaging
conditions, we anticipate developing robust solutions to effectively
address and rectify these labeling inconsistencies.
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